Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the ATP-binding subunit of an ABC transporter

Abstract

ABC transporters (also known as traffic ATPases) form a large family of proteins responsible for the translocation of a variety ofcompounds across membranes of both prokaryotes and eukaryotes1. The recently completed Escherichia coli genome sequence revealed that the largest family of paralogous E. coli proteins is composed of ABC transporters2. Many eukaryotic proteins of medical significance belong to this family, such as the cystic fibrosis transmembrane conductance regulator (CFTR), the P-glycoprotein (or multidrug-resistance protein) and the heterodimeric transporter associated with antigen processing (Tap1–Tap2). Here we report the crystal structure at 1.5 Å resolution of HisP, the ATP-binding subunit of the histidine permease, which is an ABC transporter from Salmonella typhimurium. We correlate the details of this structure with the biochemical, genetic and biophysical properties of the wild-type and several mutant HisP proteins. The structure provides a basis for understanding properties of ABC transporters and of defective CFTR proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of HisP.
Figure 2: Diagram of the secondary structure of HisP.
Figure 3: Atomic details of the interactions of HisP (residues are boxed) with ATP (centre).
Figure 4: Locations of signal-independent HisP mutations in the crystal structure.
Figure 5: Sequence alignment of HisP and the NBDs of human CFTR.

Similar content being viewed by others

References

  1. Doige, C. A. & Ames, G. F.-L. ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. Annu. Rev. Microbiol. 47, 291–319 (1993).

    Article  CAS  Google Scholar 

  2. Blattner, F. R.et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 (1997).

    Article  CAS  Google Scholar 

  3. Nikaido, K., Liu, P.-Q. & Ames, G. F.-L. Purification and characterization of HisP, the ATP-binding subunit of a traffic ATPase (ABC transporter), the histidine permease of Salmonella typhimurium. Solubilization, dimerization, and ATPase activity. J. Biol. Chem. 272, 27745–27752 (1997).

    Article  CAS  Google Scholar 

  4. Liu, C. E. & Ames, G. F.-L. Characterization of transport through the periplasmic histidine permease using proteoliposomes reconstituted by dialysis. J. Biol. Chem. 272, 859–866 (1997).

    Article  CAS  Google Scholar 

  5. Liu, C. E., Liu, P.-Q. & Ames, G. F.-L. Characterization of the adenosine triphosphatase activity of the periplasmic histidine permease, a traffic ATPase (ABC transporter). J. Biol. Chem. 272, 21883–21891 (1997).

    Article  CAS  Google Scholar 

  6. Baichwal, V., Liu, D. & Ames, G. F.-L. The ATP-binding component of a prokaryotic traffic ATPase is exposed to the periplasmic (external) surface. Proc. Natl Acad. Sci. USA 90, 620–624 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Petronilli, V. & Ames, G. F.-L. Binding protein-independent histidine permease mutants: uncoupling of ATP hydrolysis from transmembrane signaling. J. Biol. Chem. 266, 16293–16296 (1991).

    CAS  PubMed  Google Scholar 

  8. Liu, P.-Q. & Ames, G. F.-L. In vitro disassembly and reassembly of an ABC transporter, the histidine permease. Proc. Natl Acad. Sci. USA 95, 3495–3500 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Kerppola, R. E., Shyamala, V., Klebba, P. & Ames, G. F.-L. The membrane-bound proteins of periplasmic permeases form a complex: identification of the histidine permease HisQMP complex. J. Biol. Chem. 266, 9857–9865 (1991).

    CAS  PubMed  Google Scholar 

  10. Story, R. M. & Steitz, T. A. Structure of the recA protein-ADP complex. Nature 355, 318–324 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Saraste, M., Sibbald, P. R. & Wittinghofer, A. The P-loop — a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430–434 (1990).

    Article  Google Scholar 

  13. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the α and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982).

    Article  CAS  Google Scholar 

  14. Pai, E. F.et al. Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341, 209–214 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Kim, S.-H., Prive, G. G. & Milburn, M. V. in Handbook of Experimental Pharmacology. GTPases in Biology (eds Dickey, B. F. & Birnbaumer, L.) 177–194 (Springer, Berlin, 1993).

    Google Scholar 

  16. Pai, E. F.et al. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 Å resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351–2359 (1990).

    Article  CAS  Google Scholar 

  17. Shyamala, V., Baichwal, V., Beall, E. & Ames, G. F.-L. Structure-function analysis of the histidine permease and comparison with cystic fibrosis mutations. J. Biol. Chem. 266, 18714–18719 (1991).

    CAS  PubMed  Google Scholar 

  18. Mimura, C. S., Admon, A., Hurt, K. A. & Ames, G. F.-L. The nucleotide-binding site of HisP, a membrane protein of the histidine permease. Identification of amino acid residues photoaffinity-labeled by 8-azido ATP. J. Biol. Chem. 265, 19535–19542 (1990).

    CAS  PubMed  Google Scholar 

  19. Ames, G. F.-L., Mimura, C., Holbrook, S. & Shyamala, V. Traffic ATPases: a superfamily of transport proteins operating from Escherichia coli to humans. Adv. Enzymol. 65, 1–47 (1992).

    CAS  PubMed  Google Scholar 

  20. Bianchet, M. A., Ko, Y. H., Amzel, L. M. & Pedersen, P. L. Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology: structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR). J. Bionerg. Biomemb. 29, 503–524 (1997).

    Article  CAS  Google Scholar 

  21. Cheng, S. H.et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834 (1990).

    Article  CAS  Google Scholar 

  22. Otwinowski, Z. in Data Collection and Processing (eds Saway, L., Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, UK, 1993).

    Google Scholar 

  23. Terwilliger, T. C., Kim, S.-H. & Eisenberg, D. Generalized method of determining heavy-atom positions using the difference Patterson function. Acta Crystallogr. A 43, 1–5 (1987).

    Article  Google Scholar 

  24. Cowtan, K. D. Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallogr. D 49, 148–157 (1993).

    Article  CAS  Google Scholar 

  25. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  26. Brünger, A. T.et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1993).

    Article  Google Scholar 

  27. Adams, P. D., Pannu, N. S., Read, R. J. & Brunger, A. T. Cross-validated maximum likelihood enhance crystallograhic simulated annealing refinement. Proc. Natl Acad. Sci. USA 94, 5018–5023 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thronton, J. M. Procheck — a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  29. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  30. Merritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Jancarik for crystallization of native HisP crystals, and D. S. King for carrying out mass-spectroscopy analysis on the native and Se-Met HisP proteins. The MAD data for this study were collected at the Lawrence Berkeley National Laboratory in the Macromolecular Crystallography Facility at beamline 5.0.2 in the Advanced Light Source. This facility is principally funded by the Office of Biological and Environmental Research of the US Department of Energy Offices with contributions from Lawrence Berkeley National Laboratory, Amgen, Roche Biosciences, the University of California, Berkeley, and Lawrence Livermore National Laboratory. This work has been supported by grants from the Health Effects and Life Sciences Research Division, Office of Biosciences and Environmental Research, Office of Energy Research of Department of Energy (to S.-H.K.) and from the NIH (to G.F.-L.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hou Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, LW., Wang, I., Nikaido, K. et al. Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396, 703–707 (1998). https://doi.org/10.1038/25393

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25393

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing