Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional inactivation of bacteriophage λ morphogenetic gene mRNA


THE synthesis of the morphogenetic proteins of bacteriophage λ seems to be regulated at the post-transcriptional level. This conclusion is based on the observation that the ratio of protein to DNA along the left arm of the λ genome varies from gene to gene by as much as 870-fold (Fig. 1), while the ratio of mRNA to DNA in this region varies less than twofold1, reflecting its transcription from a single promoter as a polycistronic mRNA2–5. These large variations in the molar ratios of the morphogenetic proteins could be explained by three different control mechanisms. (1) The initiation of protein synthesis could be controlled at the level of ribosome binding either by initiation factor complexes or by mRNA secondary structure6,7. (2) Some morphogenetic proteins could act to regulate their own translation or that of neighbouring genes (N. Sternberg, personal communication). (3) The differential translation of the late gene transcripts could be achieved by selectively inactivating some transcripts but not others. Our previous experiments using RNA:DNA hybridisation ruled out differential chemical decay of the mRNA derived from the late region of the genome, but did not exclude the possibility that differential functional inactivation of morphogenetic gene transcripts could account for the late protein to DNA variation1. Recent experiments indicate that functional and chemical decay are different processes which can vary widely in rate8 and temperature dependence9. Functional decay in a polycistronic message generally seems to involve an endonucleolytic attack near the 5′-end of each gene transcript8,10 at a specific target either in or near the ribosome-binding site11. Thus mRNA inactivation is not primarily a function of the length of a transcript and can vary from transcript to transcript within the same cell11. Because of this variation, differential functional decay has been invoked as a possibly significant mechanism of post-transcriptional control11,12.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout


  1. Ray, P. N., and Pearson, M. L., J. molec. Biol., 85, 163–175 (1974).

    Article  CAS  Google Scholar 

  2. Oda, K., Sakakibara, Y., and Tomizawa, J., Virology, 39, 901–918 (1969).

    Article  CAS  Google Scholar 

  3. Herskowitz, I., and Signer, E. R., J. molec. Biol., 47, 545–556 (1970).

    Article  CAS  Google Scholar 

  4. Chowdhury, D. M., Guha, A., Nature new Biol., 241, 196–198 (1973).

    Article  CAS  Google Scholar 

  5. Gariglio, P., and Green, M. H., Virology, 53, 392–404 (1973).

    Article  CAS  Google Scholar 

  6. Goldman, E., and Lodish, H. F., J. molec. Biol., 67, 35–47 (1972).

    Article  CAS  Google Scholar 

  7. Groner, Y., Pollack, Y., Berissi, H., and Revel, M., Nature new Biol., 239, 16–19 (1972).

    Article  CAS  Google Scholar 

  8. Yamada, Y., Whitaker, P. A., and Nakada, D., Nature, 248, 335–338 (1974).

    Article  ADS  CAS  Google Scholar 

  9. Kennell, D., and Bicknell, I., J. molec. Biol., 74, 21–31 (1973).

    Article  CAS  Google Scholar 

  10. Blundell, M., and Kennell, D., J. molec. Biol., 83, 143–161 (1974).

    Article  CAS  Google Scholar 

  11. Blundell, M., Craig, E., and Kennell, D., Nature new Biol., 238, 46–49 (1972).

    Article  ADS  CAS  Google Scholar 

  12. Puga, A., Borras, M., Tessman, E. S., and Tessman, I., Proc. natn. Acad. Sci. U.S.A., 70, 2171–2175 (1973).

    Article  ADS  CAS  Google Scholar 

  13. Murialdo, H., and Siminovitch, L., in The Bacteriophage Lambda (edit. by Hershey, A. D.), 711–723 (Cold Spring Harbor Laboratory, New York, 1971).

    Google Scholar 

  14. Pato, M. L., and Von Meyenberg, K., Cold Spring Harb. Symp. quant. Biol., 35, 497–504 (1970).

    Article  CAS  Google Scholar 

  15. Marrs, B. L., and Yanofsky, C., Nature new Biol., 234, 168–170 (1971).

    Article  CAS  Google Scholar 

  16. Kennell, D., and Simmons, C., J. molec. Biol., 70, 451–464 (1972).

    Article  CAS  Google Scholar 

  17. Summers, W. C., J. molec. Biol., 51, 671–678 (1970).

    Article  CAS  Google Scholar 

  18. Craig, E., Cremer, K., and Schlessinger, D., J. molec. Biol., 71, 701–715 (1972).

    Article  CAS  Google Scholar 

  19. Jaenish, R., Jacob, E., and Hofschneider, P. H., Nature, 227, 59–60 (1970).

    Article  ADS  Google Scholar 

  20. Hayashi, M. N., and Hayashi, M., Proc. natn. Acad. Sci. U.S.A., 61, 1107–1114 (1968).

    Article  ADS  CAS  Google Scholar 

  21. Walker, P. M. B., Prog. Nucleic Acid Res. molec. Biol., 9, 301–326 (1969).

    Article  CAS  Google Scholar 

  22. Schwartz, T., Craig, E., and Kennell, D., J. molec. Biol., 54, 299–311 (1970).

    Article  CAS  Google Scholar 

  23. Murialdo, H., and Siminovitch, L., Virology, 48, 785–823 (1972).

    Article  CAS  Google Scholar 

  24. Hendrix, R. W., and Casjens, S. R., Proc. natn. Acad. Sci. U.S.A., 71, 1451–1455 (1974).

    Article  ADS  CAS  Google Scholar 

  25. Bremer, H., and Yuan, D., Biochim. biophys. Acta., 169, 21–34 (1968).

    Article  CAS  Google Scholar 

  26. Gillespie, D., and Spiegelman, S., J. molec. Biol., 12, 829–842 (1965).

    Article  CAS  Google Scholar 

  27. Lozeron, H. A., and Szybalski, W., Virology, 39, 373–388 (1969).

    Article  CAS  Google Scholar 

  28. Ray, P., and Murialdo, H., Virology (in the press).

  29. Bremer, H., and Yuan, D., J. molec. Biol., 38, 163–180 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

RAY, P., PEARSON, M. Functional inactivation of bacteriophage λ morphogenetic gene mRNA. Nature 253, 647–650 (1975).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing