Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polysaccharide elasticity governed by chair–boat transitions of the glucopyranose ring

Abstract

Many common, biologically important polysaccharides contain pyranose rings made of five carbon atoms and one oxygen atom. They occur in a variety of cellular structures, where they are often subjected to considerable tensile stress1,2,3,4,5,6. The polysaccharides are thought to respond to this stress by elastic deformation, but the underlying molecular rearrangements allowing such a response remain poorly understood. It is typically assumed, however, that the pyranose ring structure is inelastic and locked into a chair-like conformation. Here we describe single-molecule force measurements7,8,9,10,11,12 on individual polysaccharides that identify the pyranose rings as the structural unit controlling the molecule's elasticity. In particular, we find that the enthalpic component of the polymer elasticity10,11,12,13,14 of amylose, dextran and pullulan is eliminated once their pyranose rings are cleaved. We interpret these observations as indicating that the elasticity of the three polysaccharides results from a force-induced elongation of the ring structure and a final transition from a chair-like to a boat-like conformation. We expect that the force-induced deformation of pyranose rings reported here plays an important role in accommodating mechanical stresses and modulating ligand binding in biological systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Force–extension curves for single polysaccharide molecules.
Figure 2: On cleavage of the pyranose ring, single molecules of amylose, pullulan and dextran display identical elastic behaviour.
Figure 3: Increased separation of glycosidic oxygen atoms during chair–boat transitions of the glucopyranose ring explains the extensibility of amylose.

Similar content being viewed by others

References

  1. McEver, R. P., Moore, K. L. & Cummings, R. D. Leukocyte trafficking mediated by selective carbohydrate interactions. J. Biol. Chem. 270, 11025–11028 (1995).

    Article  CAS  Google Scholar 

  2. Rosen, S. D. & Bertozzi, C. R. Leukocyte adhesion: two selectins converge on sulphate. Curr. Biol. 6, 261–264 (1996).

    Article  CAS  Google Scholar 

  3. Alon, R., Hammer, D. A. & Springer, T. A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374, 539–542 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Puri, K. D., Chen, S. & Springer, T. A. Modifying the mechanical property and shear threshold of L-selectin adhesion independently of equilibrium properties. Nature 392, 930–933 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Cosgrove, D. J. Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9, 1031–1041 (1997).

    Article  CAS  Google Scholar 

  6. Thwaites, J. J. & Mendelson, N. H. Biomechanics of bacterial walls: studies of bacterial thread made from Bacillus subtilis. Proc. Natl Acad. Sci. USA 82, 2163–2167 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Bustamante, C., Rivetti, C. & Keller, D. J. Scanning force microscopy under aqueous solutions. Curr. Opin. Struct. Biol. 7, 709–716 (1997).

    Article  CAS  Google Scholar 

  8. Florin, E. L., Moy, V. T. & Gaub, H. E. Adhesion forces between individual ligand-receptor pairs. Science 264, 415–417 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Lee, G. U., Chrisey, L. A. & Colton, R. J. Direct measurement of the forces between complementary strands of DNA. Science 266, 771–773 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H. E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997).

    Article  CAS  Google Scholar 

  11. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  12. Oberhauser, A. F., Marszalek, P. E., Erickson, H. P. & Fernandez, J. M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Rief, M., Fernandez, J. M. & Gaub, H. E. Elastically coupled two-level-systems as a model for biopolymer extensibility. Phys. Rev. Lett. 81, 4764–4767 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Brown, G. M. & Levy, H. A. α-D-Glucose: precise determination of crystal and molecular structure by neutron-diffraction analysis. Science 147, 1038–1039 (1965).

    Article  ADS  CAS  Google Scholar 

  16. Chu, S. C. C. & Jeffrey, G. A. The refinement of the crystal structures of β-D-glucose and cellobiose. Acta. Crystallogr. B 24, 830–838 (1968).

    Article  CAS  Google Scholar 

  17. Brown, G. M. & Levy, H. A. α-D-Glucose: further refinement based on neutron-diffraction data. Acta Crystallogr. B 35, 656–659 (1979).

    Article  Google Scholar 

  18. Brady, J. W. Molecular dynamics simulations of α-D-glucose. J. Am. Chem. Soc. 108, 8153–8160 (1986).

    Article  CAS  Google Scholar 

  19. Brady, J. W. Molecular dynamics simulations of β-D-glucopyranose. Carbohydr. Res. 165, 306–312 (1987).

    Article  CAS  Google Scholar 

  20. Joshi, N. V. & Rao, V. S. R. Flexibility of the pyranose ring in α- and β-D-glucoses. Biopolymers 18, 2993–3004 (1979).

    Article  CAS  Google Scholar 

  21. Bobbitt, J. M. in Advances in Carbohydrate Chemistry (eds Wolfram, M. L. & Tipson, R. S.) 1–4 (Academic, New York, 1956).

    Google Scholar 

  22. Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Li, H., Rief, M., Oesterhelt, F. & Gaub, H. E. Single-molecular force spectroscopy on xanthan by AFM. Adv. Mater. 3, 316–319 (1998).

    Article  Google Scholar 

  24. Kellie, G. M. & Riddell, F. G. Non-chair conformations of six-membered rings. Top. Stereochem. 8, 225–264 (1974).

    CAS  Google Scholar 

  25. Pickett, H. M. & Strauss, H. L. Conformational structure, energy, and inversion rates of cyclohexane and some related oxanes. J. Am. Chem. Soc. 92, 7281–7290 (1970).

    Article  Google Scholar 

  26. Drickamer, K. Making a fitting choice: common aspects of sugar-binding sites in plant and animal lectins. Structure 5, 465–468 (1997).

    Article  CAS  Google Scholar 

  27. Barton, D. H. R. The principles of conformational analysis. Science 169, 539–544 (1970).

    Article  ADS  CAS  Google Scholar 

  28. Florin, E. L.et al. Sensing specific molecular interactions with the atomic force microscope. Biosensors Bioelectr. 10, 895–901 (1995).

    Article  CAS  Google Scholar 

  29. Quanta97/CHARMm(Molecular Simulations, 9685 Scranton Rd, San Diego, California 92121, USA, (1997)).

  30. Gaussian 94(Gaussian Inc., Carnegie Office Prk, Bldg 6, Pittsburgh, Pennsylvania 15106, USA, (1994)).

Download references

Acknowledgements

This work was supported by the NSF (P.E.M.) and the NIH (J.M.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio M. Fernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marszalek, P., Oberhauser, A., Pang, YP. et al. Polysaccharide elasticity governed by chair–boat transitions of the glucopyranose ring. Nature 396, 661–664 (1998). https://doi.org/10.1038/25322

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25322

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing