Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microsomal enzyme induction by methadone and its implications on tolerance to methadone lethality


MANY investigators have sought to explain narcotic tolerance as a result of increased metabolic inactivation of the drug. No evidence for disposition tolerance has yet been reported, however1–6. On the contrary, tolerance to most narcotic effects seems to be adaptive or cellular tolerance, that is a decrease in pharmacological effects even when enough drug is in contact with target cells in the brain to produce marked effects in naive animals7. We wish to report, however, that metabolic inactivation of methadone, a widely used synthetic narcotic, does increase, with a resulting tolerance to its toxic properties.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Axelrod, J., Science, 124, 263–264 (1956).

    Article  ADS  CAS  Google Scholar 

  2. Cochin, J., and Axelrod, J., J. Pharmac. exp. Ther., 125, 105–110 (1959).

    CAS  Google Scholar 

  3. Cochin, J., and Axelrod, J., Fedn Proc., 17, 359 (1958).

    Google Scholar 

  4. Cochin, J., and Economan, S., Fedn Proc., 18, 377 (1959).

    Google Scholar 

  5. March, C., and Elliott, H., Proc. Soc. exp. Biol. Med., 86, 494–497 (1954).

    Article  CAS  Google Scholar 

  6. Mannering, G., and Takemori, A., J. Pharmac. exp. Ther., 127, 187–190 (1959).

    CAS  Google Scholar 

  7. Way, E. L., and Adler, T. K., in The Biological Disposition of Morphine and Its Surrogates, 19–27 (World Health Organization, Geneva, 1962).

    Google Scholar 

  8. Way, E. L., Loh, H. H., and Shen, F. H., J. Pharmac. exp. Ther., 167, 1–8 (1969).

    CAS  Google Scholar 

  9. Sung, C. Y., and Way, E. L., J. Pharmac. exp. Ther, 98, 72–76 (1950).

    CAS  Google Scholar 

  10. Axelrod, J., J. Pharmac. exp. Ther., 117, 322–330 (1956).

    CAS  Google Scholar 

  11. Fouts, J., Toxicol. appl. Pharmacol., 16, 48–65 (1970).

    Article  CAS  Google Scholar 

  12. Conney, A., Pharmacol. Rev., 19, 317–366 (1967).

    CAS  PubMed  Google Scholar 

  13. Pohland, A., Sullivan, H. R., and Lee, H. M., Abstr. Am. chem. Soc. 136th Meeting, 150 (1959).

  14. Pohland, A., Boaz, H., and Sullivan, H., J. med. Chem., 14, 194–197 (1971).

    Article  CAS  Google Scholar 

  15. Beckett, A., Taylor, J., Casy, A., and Hassan, M., J. Pharm. Pharmacol., 20, 754–762 (1968).

    Article  CAS  Google Scholar 

  16. Baselt, R., and Casarett, L., Biochem. Pharmacol., 21, 2705–2712 (1972).

    Article  CAS  Google Scholar 

  17. Robinson, A., and Williams, F., J. Pharm. Pharmacol., 23, 353–358 (1971).

    Article  CAS  Google Scholar 

  18. Inturrisi, C., and Verebely, H., J. Chromatogr., 65, 361–369 (1972).

    Article  CAS  Google Scholar 

  19. Sullivan, H., and Due, S., J. med. Chem., 16, 909–913 (1973).

    Article  CAS  Google Scholar 

  20. Sung, C. Y., Way, E. L., and Scott, K. G., J. Pharmac. exp. Ther., 107, 12–23 (1953).

    CAS  Google Scholar 

  21. Baselt, R. C., and Casarett, L. G., Clin. pharmacol. Therap., 13, 64–70 (1972).

    Article  CAS  Google Scholar 

  22. Eisenbrandt, L., Adler, T., Elliott, H., and Abdou, L., J. Pharmac. exp. Ther., 98, 200–205 (1950).

    CAS  Google Scholar 

  23. Alvares, A., and Kappas, A., J. lab. clin. Med., 79, 439–451 (1972).

    CAS  PubMed  Google Scholar 

  24. Peters, M. A., Archs int. Pharmacodyn., 205, 259–260 (1973).

    CAS  Google Scholar 

  25. Misra, A., Mule, S., Block, R., and Vahlamani, N., J. Pharmac. exp. Ther., 185, 287–299 (1973).

    CAS  Google Scholar 

  26. Mannering, G. J., in Selected Pharmacological Testing Methods (edit. by Burger, A.), 51–119 (Marcel Dekker, New York, 1968).

    Google Scholar 

  27. Vessell, E., Lang, C., White, W., Passananti, G., and Tripp, S., Science, 179, 896–897 (1973).

    Article  ADS  Google Scholar 

  28. Chambers, C., and Taylor, W. Reported to the Committee on Problems of Drug Dependence, Division of Medical Sciences, US National Academy of Sciences, National Research Council, Toronto, Canada, 1162–1169, 16–17 February, 1971.

  29. Miller, L., and Tainter, M., Proc. Soc. exp. Biol. Med., 57, 261–264 (1944).

    Article  CAS  Google Scholar 

  30. Lowry, O., Rosebrough, N., Farr, A., and Randall, R., J. biol. Chem., 193, 265–271 (1951).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

MASTEN, L., PETERSON, G., BURKHALTER, A. et al. Microsomal enzyme induction by methadone and its implications on tolerance to methadone lethality. Nature 253, 200–202 (1975).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing