Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrostatically driven charge-ordering in Fe2OBO3

Abstract

Charge-ordering is an important phenomenon in conducting metal oxides: it leads to metal–insulator transitions1 in manganite perovskites (which show ‘colossal’ magnetoresistances), and the Verwey2 transition in magnetite (in which the material becomes insulating at low temperatures when the conduction electrons freeze into a regular array). Charge-ordered ‘stripes’ are found in some manganites3,4 and copper oxide superconductors5; in the latter case, dynamic fluctuations of the stripes have been proposed6 as a mechanism of high-temperature superconductivity. But an important unresolved issue is whether the charge-ordering in oxides is driven by electrostatic repulsions between the charges (Wigner crystallization7), or by the strains arising from electron–lattice interactions (such as Jahn–Teller distortions) involving different localized electronic states. Here we report measurements on iron oxoborate, Fe2OBO3, that support the electrostatic repulsion charge-ordering mechanism: the system adopts a charge-ordered state below 317 K, in which Fe2+ and Fe3+ ions are equally distributed over structurally distinct Fesites. In contrast, the isostructural manganese oxoborate, Mn2OBO3, has been previously shown8 to undergo charge-ordering through Jahn–Teller distortions. We therefore conclude that both mechanisms occur within the same structural arrangement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Fe2OBO3 structure projected on the y–z plane (y vertical, z horizontal).
Figure 2: Conductivity and structural anomalies at the charge-ordering transition in Fe2OBO3.
Figure 3: Mössbauer spectra of Fe2OBO3 between 190 and 500 K, collected in transmission geometry on a conventional constant acceleration spectrometer.
Figure 4: Charge disorder and order in Fe2OBO3.

Similar content being viewed by others

References

  1. Rao, C. N. R. & Cheetham, A. K. Giant magnetoresistance, charge-ordering, and related aspects of manganates and other oxide systems. Adv. Mater. 9, 1009–1017 (1997).

    Article  CAS  Google Scholar 

  2. Verwey, E. J. W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144, 327–328 (1939).

    Article  ADS  CAS  Google Scholar 

  3. Radaelli, P. G., Cox, D. E., Marezio, M. & Cheong, S. W. Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3. Phys. Rev. B 55, 3015–3023 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Mori, S., Chen, C. H. & Cheong, S. W. Pairing of charge-ordered stripes in (La,Ca)MnO3. Nature 392, 473–476 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  6. Salkola, M. I., Emery, V. J. & Kivelson, S. A. Implications of charge-ordering for single-particle properties of high-Tcsuperconductors. Phys. Rev. Lett. 77, 155–158 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Mott, N. F. in Metal–Insulator Transitions 2nd edn 213–215 (Taylor & Francis, London, 1990).

    Book  Google Scholar 

  8. Norrestam, R., Kritikos, M. & Sjoerdin, A. Manganese (II,III) oxyborate, Mn2OBO3: a distorted homometallic warwickite — synthesis, crystal structure, band calculations, and magnetic susceptibiity. J. Solid State Chem. 114, 311–316 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Honig, J. M. Analysis of the Verwey transition in magnetite. J. All. Comp. 229, 24–39 (1995).

    Article  CAS  Google Scholar 

  10. Coey, J. M. D., Berkowitz, A. E., Balcells, L., Putris, F. F. & Parker, F. T. Magnetoresistance of magnetite. Appl. Phys. Lett. 72, 734–736 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Takeuchi, Y., Watanabe, T. & Ito, T. The crystal structures of warwickite, ludwigite and pinakiolite. Acta Crystallogr. 3, 98–107 (1950).

    Article  CAS  Google Scholar 

  12. Bertaut, E. F. Structures des boroferrites. Acta Crystallogr. 3, 473–474 (1950).

    Article  CAS  Google Scholar 

  13. Attfield, J. P., Clarke, J. F. & Perkins, D. A. Magnetic and crystal structures of iron borates. Physica B 180, 581–584 (1992).

    Article  ADS  Google Scholar 

  14. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  ADS  Google Scholar 

  15. Bluhm, K. & Utzolino, A. Synthesis and crystal structure of manganese borate oxides — MnFe(BO3)O and MnAl0.5Y0.5 (BO3)O. Z. Naturforsch. B 50, 1146–1150 (1995).

    Article  Google Scholar 

  16. Norrestam, R. Structural investigation of 2 synthetic warwickites — undistorted orthorhombic MgScOBO3and distorted monoclinic Mg0.76Mn1.24OBO3. Z. Krist. 189, 1–11 (1989).

    Article  CAS  Google Scholar 

  17. Swinnea, J. S. & Steinfink, H. Crystal structure and Mössbauer spectrum of vonsenite, 2FeO.FeBO3. Am. Mineral. 5, 827–832 (1983).

    Google Scholar 

  18. Rozenberg, G. K., Hearne, G. R., Paternak, M. P., Metcalf, P. A. & Honig, J. M. Nature of the Verwey transition in magnetite (Fe3O4) to pressures of 16 GPa. Phys. Rev. B 53, 6482–6487 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Izumi, M. et al. Structure of magnetite (Fe3O4) below the Verwey transition temperature. Acta Crystallogr. B 38, 2121–2133 (1982).

    Article  Google Scholar 

Download references

Acknowledgements

We thank EPSRC for provision of beam time at SRS and ILL, and G. Bushnell-Wye (SRS) and A. Hewat (ILL) for assistance with data collection. Support for A.M.T.B. from EPSRC and the Daresbury Laboratory and for L.M.R.M. from the Basque Government is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Attfield.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attfield, J., Bell, A., Rodriguez-Martinez, L. et al. Electrostatically driven charge-ordering in Fe2OBO3. Nature 396, 655–658 (1998). https://doi.org/10.1038/25309

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25309

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing