Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Glutamate receptors in the rat central nervous system

Abstract

ALTHOUGH it is widely accepted that glutamate may be a significant central transmitter (for reviews, see refs 1 and 2), definitive neuropharmacological evidence at the synaptic level has not been forthcoming, and studies with proposed glutamate antagonists3–6 have yielded anomalous results. On the basis of biochemical evidence, however7, glutamate fulfils many of the criteria expected of a neurotransmitter; in particular, nerve endings8 and glia9,10 possess high-affinity transport systems for glutamate, which it is thought, in common with other amino acid neurotransmitters, are responsible for terminating its synaptic actions. For these high-affinity systems to function, there is a stringent requirement for sodium11, which may be involved in the initial binding phase at the reuptake site, prior to transport12–14. Until recently, very little attention has been paid to the possibility of investigating directly the biochemical properties of postsynaptic amino acid receptors. Young and Snyder15 have demonstrated that strychnine, a potent and selective antagonist of glycine-induced hyperpolarisations of spinal neurones, binds specifically to a component of synaptic membranes; this is probably the physiological glycine receptor since strychnine has negligible affinity for the glycine high-affinity uptake system. The specific γ-aminobutyric acid (GABA) antagonist, bicuculline, has also been found to competitively inhibit GABA binding to synaptosomes, in which the uptake site had been inactivated by chlorpromazine16. In both these cases, binding to the postsynaptic receptor was not affected by the absence of sodium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Johnson, J. L., Brain Res., 37, 1–19 (1972).

    Article  CAS  Google Scholar 

  2. Hammerschlag, R., and Weinreich, D., Biochem. Psychopharmac., 6, 165–180 (1972).

    CAS  Google Scholar 

  3. McLennan, H., Marshall, K. C., and Huffman, R. D., Experientia, 27, 1116 (1971).

    Google Scholar 

  4. Haldeman, S., and McLennan, H., Brain Res., 45, 393–400 (1972).

    Article  CAS  Google Scholar 

  5. Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., Tebēcis, A. K., and Watkins, J. C., Brain Res., 41, 283–301 (1972).

    Article  CAS  Google Scholar 

  6. Davies, J., and Watkins, J. C., Brain Res., 59, 311–322 (1973).

    Article  CAS  Google Scholar 

  7. Snyder, S. H., Young, A. B., Bennett, J. P., and Mulder, A. H., Fedn Proc., 32, 2039–2047 (1973).

    CAS  Google Scholar 

  8. Logan, W. J., and Snyder, S. H., Brain Res., 42, 413–431 (1972).

    Article  CAS  Google Scholar 

  9. Schrier, B. K., and Thompson, E. J., J. biol. Chem., 249, 1769–1781 (1974).

    CAS  PubMed  Google Scholar 

  10. Roberts, P. J., and Keen, P., J. Neurochem., 23, 201–209 (1974).

    Article  CAS  Google Scholar 

  11. Bennett, J. P., Logan, W. J., and Snyder, S. H., J. Neurochem., 21, 1533–1550 (1973).

    Article  CAS  Google Scholar 

  12. Varon, S., Weinstein, H., Kakefuda, K., and Roberts, E., Biochem. Pharmac., 14, 1213–1224 (1965).

    Article  CAS  Google Scholar 

  13. DeFeudis, F. V., Life Sci., 11, 743–748 (1972).

    Article  CAS  Google Scholar 

  14. Shiu, P. C., and Elliot, K. A. C., Can. J. Biochem. Physiol., 51, 121–128 (1973).

    Article  CAS  Google Scholar 

  15. Young, A. B., and Snyder, S. H., Proc. natn. Acad. Sci. U.S.A., 70, 2832–2836 (1973).

    Article  ADS  CAS  Google Scholar 

  16. Peck, E. J., jun., Schaeffer, J. M., and Clark, J. H., Biochem. biophys. Res. Commun., 52, 394–400 (1973).

    Article  CAS  Google Scholar 

  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. biol. Chem., 193, 265–275 (1951).

    CAS  Google Scholar 

  18. Curtis, D. R., and Watkins, J. C., J. Physiol., 166, 1–14 (1963).

    Article  CAS  Google Scholar 

  19. Balcar, V. J., and Johnston, G. A. R., J. Neurobiol., 3, 295–301 (1972).

    Article  CAS  Google Scholar 

  20. Balcar, V. J., and Johnston, G. A. R., J. Neurochem., 19, 2657–2666 (1972).

    Article  CAS  Google Scholar 

  21. Roberts, P. J., and Watkins, J. C., Brain Res. (in the press).

  22. Curtis, D. R., Duggan, A. W., and Johnston, G. A. R., Expl Brain Res., 10, 447–462 (1970).

    Article  CAS  Google Scholar 

  23. Kleinzeller, A., and Cort, J. H., Biochem. J., 67, 15–24 (1957).

    Article  CAS  Google Scholar 

  24. Webb, J. L., in Enzyme and Metabolic Inhibitors, Vol II, 729–986 (Academic Press, New York, 1966).

    Google Scholar 

  25. Lunt, G. G., Comp. gen. Pharmac., 4, 75–79 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ROBERTS, P. Glutamate receptors in the rat central nervous system. Nature 252, 399–401 (1974). https://doi.org/10.1038/252399a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/252399a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing