Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Degeneracy effects on neutrino mass ejection in supernovae


THAT type II supernovae apparently occur predominantly in stars significantly more massive than the Sun has been known1 for some time, although a precise stellar mass range for these cataclysmic events can not be defined observationally. Recent theoretical interpretations2–4 of diverse observational data seem, however, to indicate independently that the masses are significantly in excess of 8M. Furthermore, observational evidence5 may exist that stars with masses below 6M cease nuclear burning before a critical supernova configuration evolves. If this is the case, the total supernovae contribution from the stars of lower mass is negligible and theoretical difficulties6 associated with such events are resolved. The circumstantial evidence for massive (>8M)supernova progenitors is thus reinforced, although problems arise in understanding the supernova mechanism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout


  1. Shklovsky, I. S., Supernovae (Wiley, New York, 1968).

    Google Scholar 

  2. Moore, E., Publ. Astr. Soc. Pacific, 85, 564 (1973).

    Article  ADS  Google Scholar 

  3. Dallaporta, N., Astr. Astrophys., 29, 393 (1973).

    ADS  Google Scholar 

  4. Arnett, W. D., and Schramm, D. N., Astrophys. J. Lett., 184, L47 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Eggen, O. J., and Greenstein, J. L., Astrophys. J., 141, 83 (1965).

    Article  ADS  Google Scholar 

  6. Buchler, J. R., Mazurek, T. J., and Truran, J. W., Comm. Astrophys. Space Phys. (in the press).

  7. Hoyle, F., and Fowler, W. A., Astrophys. J., 132, 565 (1960).

    Article  ADS  CAS  Google Scholar 

  8. Colgate, S. A., and White, R. H., Astrophys. J., 143, 626 (1966).

    Article  ADS  CAS  Google Scholar 

  9. Wilson, J. R., Astrophys. J., 163, 209 (1971).

    Article  ADS  CAS  Google Scholar 

  10. Colgate, S. A., Astrophys. J., 153, 335 (1968).

    Article  ADS  Google Scholar 

  11. Arnett, W. D., Astrophys. J., 153, 341 (1968).

    Article  ADS  Google Scholar 

  12. Freedman, D. Z., Phys. Rev., 9 D, 1389 (1974).

    ADS  CAS  Google Scholar 

  13. Wilson, J. R., Phys. Rev. Lett., 32, 849 (1974).

    Article  ADS  CAS  Google Scholar 

  14. Bahcall, J. N., Phys. Rev., 136, B1164 (1964).

    Article  ADS  Google Scholar 

  15. Imshennik, V. S., and Nadezhin, D. K., Sov. Phys. JETP, 36, 821 (1973).

    ADS  Google Scholar 

  16. Arnett, W. D., Can. J. Phys., 44, 2553 (1966).

    Article  ADS  CAS  Google Scholar 

  17. Beaudet, G., Petrosian, V., and Salpeter, E. E., Astrophys. J., 150, 979 (1967).

    Article  ADS  CAS  Google Scholar 

  18. Langer, W. D., Rosen, L. C., Cohen, J. M., and Cameron, A. G. W., Astrophys. Space Sci., 5, 259 (1969).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

MAZUREK, T. Degeneracy effects on neutrino mass ejection in supernovae. Nature 252, 287–289 (1974).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing