Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multiple control mechanisms underlie initiation of growth in animal cells

Abstract

THE understanding of the control of cell proliferation and differentiation requires the unravelling of the early events that trigger the initiation of growth. An in vitro system to study the initiation of growth is provided by the mouse 3T3 cell line. These cells exist in two alternative growth states: either reversibly arrested in the G0 phase of the cell cycle or in active proliferation. When resting 3T3 cells are exposed to fresh serum they recommence DNA synthesis and cell division1. Functional membrane changes are among the earliest events associated with the reinitiation of growth2. Within minutes of serum addition, the rate of transport of inorganic phosphate, nucleosides and glucose is increased several fold2–6, while cyclic AMP, which has been implicated in the regulation of growth of cultured fibroblasts, shows an opposite change7–11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Todaro, G. J., Matsuija, Y., Bloom, S., Robbins, A., and Green, H., in Growth Regulating Substances for Animal Cells in Culture (edit. by Defendi, V., and Stoker, M.), 87–98 (Wistar Institute Press, 1967).

    Google Scholar 

  2. Pardee, A. B., and Rozengurt, E., in Biochemistry of Cell Walls and Membranes (edit. by Fox, C. F.), (Medical and Technical Publishing Company, London, in the press).

  3. Cunningham, D. D., and Pardee, A. B., Proc. natn. Acad. Sci. U.S.A., 64, 1049–1056 (1969).

    Article  ADS  CAS  Google Scholar 

  4. Grimes, W. J., and Schroeder, J. L., J. Cell Biol., 56, 487–491 (1973).

    Article  CAS  Google Scholar 

  5. Kram, R., Mamont, P., and Tomkins, G. M., Proc. natn. Acad. Sci. U.S.A., 70, 1432–1436 (1973).

    Article  ADS  CAS  Google Scholar 

  6. Bradley, W. E. C., and Culp, L. A., Expl Cell Res., 84, 335–350 (1974).

    Article  CAS  Google Scholar 

  7. Otten, J., Johnson, G. S., and Pastan, I., J. biol. Chem., 247, 7082–7087 (1972).

    CAS  Google Scholar 

  8. Sheppard, J. R., Nature new Biol., 236, 14–16 (1972).

    Article  CAS  Google Scholar 

  9. Burger, M. M., Bombik, B. M., Breckenridge, B. M., and Sheppard, J. R., Nature new Biol., 239, 161–163 (1972).

    Article  CAS  Google Scholar 

  10. Rozengurt, E., and Jimenez de Asua, L., Proc. natn. Acad. Sci. U.S.A., 70, 3609–3612 (1973).

    Article  ADS  CAS  Google Scholar 

  11. Jimenez de Asua, L., Rozengurt, E., and Dulbecco, R., Proc. natn. Acad. Sci. U.S.A., 71, 96–98 (1974).

    Article  ADS  CAS  Google Scholar 

  12. Hershko, A., Hamont, P., Shields, R., and Tomkins, G. M., Nature new Biol., 232, 206–211 (1971).

    Article  CAS  Google Scholar 

  13. Pardee, A. B., Jimenez de Asua, L., and Rozengurt, E., in Control of Proliferation in Animal Cells (edit. by Clarkson, B., and Baserga, R.), 547–561 (Cold Spring Harbor Laboratory, 1974).

    Google Scholar 

  14. Kram, R., and Tomkins, G. M., Proc. natn. Acad. Sci. U.S.A., 70, 1659–1663 (1973).

    Article  ADS  CAS  Google Scholar 

  15. Chasin, M., Harris, D. N., Phillips, M. B., Hess, S. M., Biochem. Pharmac., 21, 2443–2450 (1972).

    Article  CAS  Google Scholar 

  16. Illiano, G., Tell, G. P. E., Siegel, M. I., and Cuatrecasas, P., Proc. natn. Acad. Sci. U.S.A., 70, 2443–2447 (1973).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DE ASUA, L., ROZENGURT, E. Multiple control mechanisms underlie initiation of growth in animal cells. Nature 251, 624–626 (1974). https://doi.org/10.1038/251624a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/251624a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing