Letter | Published:

Observation of ‘third sound’ in superfluid 3He

Naturevolume 396pages554557 (1998) | Download Citation

Subjects

Abstract

Waves on the surface of a fluid provide a powerful tool for studying the fluid itself and the surrounding physical environment. For example, the wave speed is determined by the force per unit mass at the surface, and by the depth of the fluid1: the decreasing speed of ocean waves as they approach the shore reveals the changing depth of the sea and the strength of gravity. Other examples include propagating waves in neutron-star oceans2 and on the surface of levitating liquid drops3. Although gravity is a common restoring force, others exist, including the electrostatic force which causes a thin liquid film to adhere to a solid. Usually surface waves cannot occur on such thin films because viscosity inhibits their motion. However, in the special case of thin films of superfluid 4He, surface waves do exist and are called ‘third sound’. Here we report the detection of similar surface waves in thin films of superfluid 3He. We describe studies of the speed of these waves, the properties of the surface force, and the film's superfluid density.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Landau, L. D. & Lifshitz, E. M. Fluid Mechanics 36–44 (Pergamon, Oxford, (1959)).

  2. 2

    Bildsten, L. & Cutler, C. Nonradial oscillations in neutron star oceans: a source of quasi-periodic x-ray oscillations? Astrophys. J. 449, 800–812 (1995).

  3. 3

    Whitaker, D. L., Weilart, M. A., Vincente, C. L., Maris, H. J. & Seidel, G. M. Oscillations of charged helium II drops. J. Low Temp. Phys. 110, 173–178 (1998).

  4. 4

    Tilley, D. R. & Tilley, J. Superfluidity and Superconductivity 77–83 (Hilger, Bristol, (1986)).

  5. 5

    Atkins, K. R. Third and fourth sound in liquid helium II. Phys. Rev. 113, 962–965 (1959).

  6. 6

    Everitt, C. W. F., Atkins, K. R. & Denenstein, A. Third sound in liquid helium films. Phys. Rev. 136, A1494–A1499 (1964).

  7. 7

    Bergman, D. Hydrodynamics and third sound in thin HeII films. Phys. Rev. 188, 370–384 (1969).

  8. 8

    Rudnick, I. Critical surface density of the superfluid component in 4He films. Phys. Rev. Lett. 40, 1454–1455 (1978).

  9. 9

    Ellis, F. M., Hallock, R. B., Miller, M. D. & Guyer, R. A. Phase separation in films of 3He-4He mixtures. Phys. Rev. Lett. 46, 1461–1464 (1981).

  10. 10

    Ketola, K. S., Wang, S. & Hallock, R. B. Anomalous wetting of helium on cesium. Phys. Rev. Lett. 68, 201–204 (1992).

  11. 11

    Ellis, F. M. & Li, L. Quantum swirling of superfluid helium films. Phys. Rev. Lett. 71, 1577–1580 (1993).

  12. 12

    Sheldon, P. A. & Hallock, R. B. Third sound and energetics in 3He-4He mixture films. Phys. Rev. B 50, 16082–16085 (1994).

  13. 13

    Brisson, J. G., Mester, J. C. & Silvera, I. F. Third sound of helium on a hydrogen substrate. Phys. Rev. B 44, 12453–12462 (1991).

  14. 14

    Ekholm, D. T. & Hallock, R. B. Studies of the decay of persistent currents in unsaturated films of superfluid 4He. Phys. Rev. B 21, 3902–3912 (1980).

  15. 15

    Pickar, K. A. & Atkins, K. R. Critical velocity of a superflowing liquid-helium film using third sound. Phys. Rev. 178, 389–399 (1969).

  16. 16

    Cho, H. & Williams, G. A. Vortex core size in submonolayer superfluid 4He films. Phys. Rev. Lett. 75, 1562–1565 (1995).

  17. 17

    Eggenkamp, M. E. W. et al. On the possibility of observing third sound on 3He. J. Low Temp. Phys. 110, 299–304 (1998).

  18. 18

    Schechter, A. M. R., Simmonds, R. W. & Davis, J. C. Capacitive generation and detection of third sound resonances in saturated superfluid 4He films. J. Low Temp. Phys. 110, 603–608 (1998).

  19. 19

    Sachrajda, A., Harris-Lowe, R. F., Harrison, J. P., Turkington, R. R. & Daunt, J. G. 3He film flow: two-dimensional superfluidity. Phys. Rev. Lett. 55, 1602–1605 (1985).

  20. 20

    Daunt, J. G. et al. Critical temperature and critical current of thin-film superfluid 3He. J. Low Temp. Phys. 70, 547–568 (1988).

  21. 21

    Davis, J. C., Amar, A., Pekola, J. P. & Packard, R. E. Superfluidity of 3He films. Phys. Rev. Lett. 60, 302–304 (1988).

  22. 22

    Xu, J. & Crooker, B. C. Very thin films of 3He: a new phase? Phys. Rev. Lett. 65, 3005–3008 (1990).

  23. 23

    Freeman, M. R., Germain, R. S., Thuneberg, E. V. & Richardson, R. C. Size effects in thin films of superfluid 3He. Phys. Rev. Lett. 60, 596–599 (1988).

  24. 24

    Jacobsen, K. W. & Smith, H. Critical current for the flow of superfluid 3He in a confined geometry. J. Low Temp. Phys. 67, 83–89 (1987).

  25. 25

    Tilley, D. R. & Tilley, J. Superfluidity and Superconductivity 92–94 (Hilger, Bristol, (1986)).

  26. 26

    Porto, J. V. & Parpia, J. M. Superfluid 3He in aerogel. Phys. Rev. Lett. 74, 4667–4670 (1995).

  27. 27

    Freeman, M. R. Size Effects in 3He Films. Thesis, Cornell Univ.((1988)).

  28. 28

    Stein, D. L. & Cross, M. C. Phase transitions in two dimensional superfluid 3He. Phys. Rev. Lett. 42, 504–507 (1979).

  29. 29

    Volovik, G. E. An analog of the quantum Hall Effect in a superfluid 3He film. Sov. Phys. JETP 67, 1804–1811 (1988).

  30. 30

    Kurihara, S. Singlet superfluidity in 3He film on 4He film. J. Phys. Soc. Jpn 52, 1311–1316 (1983).

Download references

Acknowledgements

We thank L. Bildsten, R. B. Hallock, D.-H. Lee, J. M. Goodkind, O. Ishikawa, J.Harrison and G. Williams for discussions. This work was supported by the NSF, the ONR and by the Packard Foundation.

Author information

Affiliations

  1. Department of Physics, University of California, Berkeley, 94720, California, USA

    • A. M. R. Schechter
    • , R. W. Simmonds
    • , R. E. Packard
    •  & J. C. Davis

Authors

  1. Search for A. M. R. Schechter in:

  2. Search for R. W. Simmonds in:

  3. Search for R. E. Packard in:

  4. Search for J. C. Davis in:

Corresponding author

Correspondence to J. C. Davis.

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/25090

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.