Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Antibodies recognise specific structures of triple-helical polynucleotides built on poly(A) or poly(dA)

Abstract

ANTIGENIC determinants of nucleic acids may comprise individual bases or base sequences, as in denatured DNA, or specific conformational features, as in helical forms1. Experimentally induced antibodies have shown selective reactivity toward double-stranded RNA2–6, RNA–DNA hybrids4, or distinct features of poly(G) · poly(C)7 or poly (dG) · poly(dC)4. Some of these antibodies can be used to identify double-helical RNA in virus-infected cells8,9 and to quantitate it in RNA extracted from such cells10, or to distinguish between double-stranded RNA and RNA–DNA hybrids in mixtures of enzyme reaction products11. Triple-helical poly(A) · 2poly(U) can also be distinguished from double-helical forms2,9. Triple-helical regions can form where continuous purine sequences occur12, and they might be involved as intermediates or as recognition sites in transcription13,14. Thus antibodies that recognise triple-helical nucleic acids are important in the definition of conformation-dependent antigenic determinants, as a model for protein recognition of specific nucleic acid sites, and they may identify such sites in naturally occurring nucleic acids. We describe here such antibodies that can differentiate three-stranded structures built on poly(A) from others built on poly(dA).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stollar, B. D., in The Antigens, 1, 1–85 (edit. by Sela, M.) (Academic Press, New York, 1973).

    Book  Google Scholar 

  2. Nahon, E., Michelson, A. M., and Lacour, F., Biochim. biophys. Acta, 149, 127–139 (1967).

    Article  CAS  Google Scholar 

  3. Schwartz, E. F., and Stollar, B. D., Biochem. biophys. Res. Commun., 35, 115–120 (1969).

    Article  CAS  Google Scholar 

  4. Stollar, B. D., Science, 169, 609–611 (1970).

    Article  ADS  CAS  Google Scholar 

  5. Plescia, O. J., Strampp, A., and Kwiatkowski, Z., Fedn. Proc., 28, 695 (1969).

    Google Scholar 

  6. Talal, N., Steinberg, A. D., and Daley, G. G., J. clin. Invest., 50, 1248–1252 (1971).

    Article  CAS  Google Scholar 

  7. Nahon-Merlin, E., Michelson, A. M., Verger, C., and Lacour, F., J. Immun., 107, 222–226 (1971).

    CAS  PubMed  Google Scholar 

  8. Silverstein, S. C., and Schur, P. H., Virology, 41, 564–566 (1970).

    Article  CAS  Google Scholar 

  9. Stollar, B. D., and Stollar, V., Virology, 42, 276–280 (1970).

    Article  CAS  Google Scholar 

  10. Stollar, V., and Stollar, B. D., Proc. natn. Acad. Sci. U.S.A., 65, 993–1000 (1970).

    Article  ADS  CAS  Google Scholar 

  11. Colby, C., Stollar, B. D., and Simon, M. I., Nature new biol., 229, 172–174 (1971).

    Article  CAS  Google Scholar 

  12. Morgan, A. R., and Wells, R. D., J. molec. Biol., 37, 63–80 (1968).

    Article  CAS  Google Scholar 

  13. Zubay, G., Proc. natn. Acad. Sci. U.S.A., 48, 456–461 (1962).

    Article  ADS  CAS  Google Scholar 

  14. Miller, J. H., and Sobell, H. M., Proc. natn. Acad. Sci. U.S.A., 55, 1201–1205 (1966).

    Article  ADS  CAS  Google Scholar 

  15. Plescia, O. J., Braun, W., and Palczuk, N. C., Proc. natn. Acad. Sci. U.S.A., 52, 279–285 (1964).

    Article  ADS  CAS  Google Scholar 

  16. Poonian, M. S., Schlabach, A. J., and Weissbach, A., Biochemistry, 10, 424–427 (1971).

    Article  CAS  Google Scholar 

  17. Felsenfeld, G., Davies, D. R., and Rich, A., J. Am. chem. Soc., 79, 2023–2024 (1957).

    Article  CAS  Google Scholar 

  18. Stevens, C. L., and Felsenfeld, G., Biopolymers, 2, 293–314 (1964).

    Article  CAS  Google Scholar 

  19. Riley, M., Maling, B., and Chamberlin, M. J., J. molec. Biol., 20, 359–385 (1966).

    Article  CAS  Google Scholar 

  20. Rich, A., Proc. natn. Acad. Sci. U.S.A., 46, 1044–1053 (1960).

    Article  ADS  CAS  Google Scholar 

  21. Arnott, S., and Bond, P. J., Nature new biol., 244, 99–101 (1973).

    Article  CAS  Google Scholar 

  22. Kabat, E. A., J. Immun., 97, 1–11 (1966).

    CAS  PubMed  Google Scholar 

  23. Wasserman, E., and Levine, L., J. Immun., 87, 290–295 (1961).

    CAS  PubMed  Google Scholar 

  24. Wahba, A. J., and Friedkin, M., J. biol. Chem., 237, 3794–3801 (1962).

    CAS  PubMed  Google Scholar 

  25. Buchanan, J. G., Nature, 168, 1091 (1951).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

STOLLAR, B., RASO, V. Antibodies recognise specific structures of triple-helical polynucleotides built on poly(A) or poly(dA). Nature 250, 231–234 (1974). https://doi.org/10.1038/250231a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/250231a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing