Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

New route for the quenching of N2(A3Σu+) in the aurora?

Abstract

THE volume production rate of N2(A3Σu+) in the aurora, as estimated from the observed emission rates in the N2 first positive and second positive systems1, is an order of magnitude greater than the observed emission rate2 in the Vergard-Kaplan system3 (A3σu+ − X1σg+). This implies a high rate of quenching by other species present in the auroral region. The most prominent species at the appropriate altitudes (>100 km) are N2, O2, N, O and NO (ref. 4). Detailed analysis of the quenching rate has led to the prediction that collision with O atoms makes a major contribution to the quenching process. However such quenching in the aurora would have to proceed1 with an efficiency one or two orders of magnitude greater than observed in the laboratory5,6 in order to account for the observed V-K intensities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shemansky, D. E., Zipf, E. C., and Donahue, T. M., Planet. Space Sci., 19, 1669 (1971).

    Article  ADS  CAS  Google Scholar 

  2. Sharp, W. E., J. geophys, Res., 76, 987 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Anketell, J., and Nicholls, R. W., Rep. Prog. Phys. 33, 269 (1970).

    Article  ADS  Google Scholar 

  4. Zipf, C. E., Borst, W. L., and Donahue, T. M., J. geophys. Res., 75, 6371 (1970).

    Article  ADS  CAS  Google Scholar 

  5. Meyer, J. A., Setser, D. W., and Stadman, D. H., Astrophys. J. 157, 1023 (1969).

    Article  ADS  CAS  Google Scholar 

  6. Young, R. A., Black, G., and Slanger, T. G., J. chem. Phys., 50, 303 (1969).

    Article  ADS  CAS  Google Scholar 

  7. Offerman, D., and Von Zahn, U., Trans. Am. geophys. Union, 52, 292 (1971).

    Google Scholar 

  8. Noxon, J. F., J. chem. Phys., 36, 926 (1962).

    Article  ADS  CAS  Google Scholar 

  9. Offerman, D., and Von Zahn, U., J. geophys. Res., 76, 2520 (1971).

    Article  ADS  Google Scholar 

  10. Schutz, K., Junge, C., Beck, R., and Albrecht, B., J. geophys. Res., 75, 2230 (1970).

    Article  ADS  Google Scholar 

  11. Lin, C., and Kaufman, F., J. chem. Phys., 55, 3760 (1971).

    Article  ADS  CAS  Google Scholar 

  12. Fishburne, E., and Edse, R., J. chem. Phys. 44, 515 (1966).

    Article  ADS  CAS  Google Scholar 

  13. Kaufman, F., Gerri, N., and Bowman, R., J. chem. Phys., 25, 106 (1956).

    Article  ADS  CAS  Google Scholar 

  14. Donovan, R. J., and Husain, D., Chem. Rev., 70, 489 (1970).

    Article  CAS  Google Scholar 

  15. Chamberlain, J. W., Physics of the Aurora and Airglow (Academic Press, New York, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MALCOLME-LAWES, D. New route for the quenching of N2(A3Σu+) in the aurora?. Nature 247, 540–541 (1974). https://doi.org/10.1038/247540a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/247540a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing