Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transamination is a Major Pathway of L-Dopa Metabolism following Peripheral Decarboxylase Inhibition

Abstract

WHEN L-3,4-dihydroxyphenylalanine (L-dopa) is administered to human subjects1, the greater proportion is metabolised by decarboxylation, a small amount by O-methylation and traces only by transamination2. It seems likely that the benefit resulting from L-dopa therapy in Parkinsonian patients derives largely from the generation of one of its metabolites, dopamine, by decarboxylation within the central nervous system3. Less than 5% of administered L-dopa becomes available for this purpose: most of the dose is decarboxylated peripherally4. There is good reason to believe that the dopamine so formed is unable to penetrate the blood-brain barrier to any great extent5, so that little of the original dose is available to contribute to the therapeutic response. By blocking peripheral decarboxylase, however, certain decarboxylase inhibitors6,7, which are themselves unable to cross the blood-brain barrier to any significant extent8, bring about an accumulation in the plasma of administered L-dopa, thus providing a higher concentration gradient to enter the central nervous system and allowing lower oral doses of L-dopa to be employed therapeutically9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brogden, R. N., Speight, T. M., and Avery, G. S., Drugs, 2, 262 (1971).

    Article  CAS  Google Scholar 

  2. Sandler, M., in Handbook of Experimental Pharmacology (Catecholamines) (edit. by Blaschko, H., and Muscholl, E.), 33, 845 (Springer, Berlin, 1972).

  3. Hornykiewicz, O., Br. med. Bull., 29, 172 (1973).

    Article  CAS  Google Scholar 

  4. Bianchine, J. R., Messiha, F. S., and Preziosi, T. J., Adv. Neurol., 2, 101 (1973).

    CAS  Google Scholar 

  5. Weil-Malherbe, H., Axelrod, J., and Tomchick, R., Science, N.Y., 129, 1226 (1959).

    Article  ADS  CAS  Google Scholar 

  6. Burkard, W. P., Gey, K. F., and Pletscher, A., Experientia, 18, 411 (1962).

    Article  CAS  Google Scholar 

  7. Porter, C. C., Watson, L. S., Titus, D. C., Totaro, J. A., and Byer, S. S., Biochem. Pharmac., 11, 1067 (1962).

    Article  CAS  Google Scholar 

  8. Barthiolini, G., and Pletscher, A., J. Pharmac. exp. Ther., 161, 14 (1968).

    Google Scholar 

  9. Birkmayer, W., Wien. klin. Wschr., 81, 677 (1969).

    CAS  Google Scholar 

  10. Messiha, F. S., Hsu, T. H., and Bianchine, J. R., J. clin. Invest., 51, 452 (1972).

    Article  CAS  Google Scholar 

  11. Calne, D. B., Reid, J. L., Vakil, S. D., Rao, S., Petrie, A., Pallis, C. A., Gawler, J., Thomas, P. K., and Hilson, A., Br. med. J., 3, 729 (1971).

    Article  CAS  Google Scholar 

  12. Calne, D. B., Karoum, F., Ruthven, C. R. J., and Sandler, M., Br. J. Pharmac. Chemother., 37, 57 (1969).

    Article  CAS  Google Scholar 

  13. Karoum, F., Ruthven, C. R. J., and Sandler, M., clin. chim. Acta, 20, 427 (1968).

    Article  CAS  Google Scholar 

  14. Karoum, F., Ruthven, C. R. J., and Sandler, M., Biochem. Med., 5, 505 (1971).

    Article  CAS  Google Scholar 

  15. Messiha, F. S., Hsu, T. H., and Bianchine, J. R., Biochem. Pharmac., 21, 2144 (1972).

    Article  CAS  Google Scholar 

  16. Muenter, M. D., Dinapoli, R. P., Sharpless, N. S., and Tyce, G. M., Mayo clin. Proc., 48, 173 (1973).

    CAS  Google Scholar 

  17. Zannoni, V. G., and Weber, W. W., J. biol. Chem., 241, 1340 (1966).

    CAS  Google Scholar 

  18. Weber, W. W., and Zannoni, V. G., J. biol. Chem., 241, 1345 (1966).

    CAS  Google Scholar 

  19. Sandler, M., Bonham Carter, S., Hunter, K. R., and Stern, G. M., Nature, 241, 439 (1973).

    Article  ADS  CAS  Google Scholar 

  20. Fellman, J. H., Fujita, T. S., and Roth, E. S., Biochim. biophys. Acta, 268, 601 (1972).

    Article  CAS  Google Scholar 

  21. Thoenen, H., in Handbook of Experimental Pharmacology (Catecholamines) (edit. by Blaschko, H., and Muscholl, E.), 33, 813 (Springer, Berlin, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SANDLER, M., JOHNSON, R., RUTHVEN, C. et al. Transamination is a Major Pathway of L-Dopa Metabolism following Peripheral Decarboxylase Inhibition. Nature 247, 364–366 (1974). https://doi.org/10.1038/247364b0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/247364b0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing