Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large variations in vent fluid CO2/3He ratios signal rapid changes in magma chemistry at Loihi seamount, Hawaii

Abstract

Loihi seamount, an active submarine volcano situated about 30 km south of the island of Hawaii, is the youngest manifestation of the hotspot responsible for the Emperor–Hawaiian seamount chain and Hawaiian islands. This seamount has been the focus of numerous studies characterizing the geophysical, geochemical and biological features of an active intraplate volcano1,2,3,4,5,6,7,8,9,10,11,12,13,14. In July–August 1996, Loihi seamount experienced the most intense period of seismic activity yet recorded for any Hawaiian volcano1. Within two months of the ‘seismic crisis’, summit and flank hydrothermal vent fluids were collected using a manned submersible. Here we report data from these samples that indicate large and systematic changes in the CO2/3He ratios of the vent fluids compared to pre-seismic-crisis values2,3. These changes are consistent with an abrupt transition from alkalic to tholeiitic basaltic magma having supplied volatiles to the vents. This rapid change in magma chemistry has been discernible only through CO2/3He monitoring, and suggests that the anticipated evolution of the Hawaiian plume to a phase of shield-building tholeiitic magmatism is highly episodic at Loihi and not yet complete.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Bathymetry of Loihi seamount following the seismic crisis of July–August 1996.
Figure 2: Helium isotope ratios versus CO2/He ratios.

References

  1. 1

    Duennebier, F. K. et al. Researchers rapidly respond to submarine activity at Loihi volcano, Hawaii. Eos 78, 229–233 (1997).

    Google Scholar 

  2. 2

    Craig, H., Welhan, J. A. & Hilton, D. R. Hydrothermal vents in Loihi caldera: Alvin results. Eos 68, 1553 (1987).

    Google Scholar 

  3. 3

    Sedwick, P., McMurtry, G. M., Hilton, D. R. & Goff, F. Carbon dioxide and helium in hydrothermal fluids from Loihi Seamount, Hawaii, USA: Temporal variability and implications for the release of mantle volatiles. Geochim. Cosmochim. Acta 58, 1219–1227 (1994).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Sedwick, P., McMurtry, G. M. & Macdougall, J. D. Chemistry of hydrothermal solutions from Pele's Vents, Loihi Seamount, Hawaii. Geochim. Cosmochim. Acta 56, 3643–3667 (1992).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Garcia, M. O. et al. Petrology and geochronology of basalt breccia from the 1996 earthquake swarm of Loihi Seamount, Hawaii: magmatic history of its 1996 eruption. Bull. Volcanol. 59, 577–592 (1998).

    ADS  Article  Google Scholar 

  6. 6

    Rison, W. & Craig, H. Helium isotopes and mantle volatiles in Loihi Seamount and Hawaiian Island basalts and xenoliths. Earth Planet. Sci. Lett. 66, 407–426 (1983).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Kurz, M. D., Jenkins, W. J., Hart, S. R. & Clague, D. A. Helium isotopic variations in volcanic rocks from Loihi Seamount and the Island of Hawaii. Earth Planet. Sci. Lett. 66, 388–406 (1983).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Valbracht, P. J., Staudigel, H., Honda, M., McDougall, I. & Davies, G. R. Isotopic tracing of volcanic source regions from Hawaii: decoupling of gaseous from lithophile magma components. Earth Planet. Sci. Lett. 144, 185–198 (1996).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Moore, J. G., Clague, D. A. & Normark, W. R. Diverse basalt types from Loihi Seamount. Geology 10, 88–92 (1982).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Garcia, M. O., Jorgenson, B., Mahoney, J. J., Ito, E. & Irving, A. J. An evaluation of temporal geochemical evolution of Loihi summit lavas: Results from Alvin submersible dives. J. Geophys. Res. 98, 537–550 (1993).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Garcia, M. O., Foss, D. J. P., West, W. B. & Mahoney, J. J. Geochemical and isotopic evolution of Loihi volcano, Hawaii. J. Petrol. 26, 1647–1674 (1995).

    Google Scholar 

  12. 12

    Malahoff, A., McMurtry, G. M., Wiltshire, J. C. & Yeh, H.-W. Geology and chemistry of hydrothermal deposits from active submarine volcano Loihi, Hawaii. Nature 298, 234–239 (1982).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Karl, D., McMurtry, G. M., Malahoff, A. & Garcia, M. Loihi Seamount, Hawaii: A mid-plate volcano with a distinctive hydrothermal system. Nature 335, 532–535 (1988).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Moyer, C. L., Dobbs, F. C. & Karl, D. M. Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from amicrobial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 60, 871–879 (1994).

    CAS  Google Scholar 

  15. 15

    Craig, H. & Lupton, J. E. in The SeaVol. 7 (ed. Emiliani, C.) 391–428 (Wiley, New York, 1981).

    Google Scholar 

  16. 16

    Cohen, A. S., O'Nions, R. K. & Kurz, M. D. Chemical and isotopic variations in Mauna Loa tholeiites. Earth Planet. Sci. Lett. 143, 111–124 (1996).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Marty, B. & Jambon, A. C/3He in volatile fluxes from the solid Earth: Implications for carbon geodynamics. Earth Planet. Sci. Lett. 83, 16–26 (1987).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Trull, T., Nadeau, S., Pineau, F., Polve, M. & Javoy, M. C-He systematics in hotspot xenoliths: Implications for mantle carbon contents and carbon recycling. Earth Planet. Sci. Lett. 118, 43–64 (1993).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Hilton, D. R., McMurtry, G. M. & Kreulen, R. Evidence for extensive degassing of the Hawaiian mantle plume from helium-carbon relationships at Kilauea volcano. Geophys. Res. Lett. 24, 3065–3068 (1997).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Dixon, J. E., Stolper, E. M. & Holloway, J. R. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: Calibration and solubility models. J. Petrol. 36, 1607–1631 (1995).

    CAS  Google Scholar 

  21. 21

    Jendrzejewski, N., Trull, T. W., Pineau, F. & Javoy, M. Carbon solubility in mid-ocean ridge basaltic melt at low pressures (250-1950 bar). Chem. Geol. 138, 81–92 (1997).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Jambon, A., Weber, H. & Braun, O. Solubility of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250–1600 °C. Geochemical implications. Geochim. Cosmochim. Acta 50, 401–408 (1986).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Lux, G. The behavior of noble gases in silicate liquids: Solution, diffusion, bubbles and surface effects, with applications to natural samples. Geochim. Cosmochim. Acta 51, 1549–1560 (1987).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Dixon, J. E. Degassing of alkalic basalts. Am. Mineral. 82, 368–378 (1997).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Frey, F. A. & Clague, D. A. Geochemistry of diverse basalt types from Loihi Seamount, Hawaii: petrogenetic implications. Earth Planet. Sci. Lett. 66, 337–355 (1983).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Frey, F. A. & Rhodes, J. M. Intershield geochemical differences among Hawaiian volcanoes: implications for source compositions, melting process and magma ascent paths. Phil. Trans. R. Soc. Lond. A 342, 121–136 (1993).

    ADS  CAS  Google Scholar 

  27. 27

    Guillou, H., Garcia, M. O. & Turpin, L. Unspiked K-Ar dating of young volcanic rocks from the Loihi and Pitcairn seamounts. J. Volcanol. Geotherm. Res. 78, 239–250 (1997).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Von Damm, K. L. et al. Chemistry of submarine hydrothermal solutions at 21 degrees N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–2220. Ozima, M. & Podosek, F. A. Noble Gas Geochemistry (Cambridge Univ. Press, 1983).

    Google Scholar 

  29. 30

    Exley, R. A., Mattey, D. P., Clague, D. A. & Pillinger, C. T. Carbon isotope systematics of a mantle “hotspot”: a comparison of Loihi Seamount and MORB glasses. Earth Planet. Sci. Lett. 78, 189–199 (1986).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank F. Duennebier and J. R. Smith for Fig. 1, and B. Eakins, M. Cremer and D.Counce for laboratory assistance. We also thank T. Kerby and the HURL operations staff forhelp at sea. Discussions with M. O. Garcia and C. G. Macpherson proved very helpful. This work was funded by the NOAA Sea Grant College and National Undersea Research Programs (to G.M.M.) and SIO “start-up” funds (to D.R.H.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. R. Hilton.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hilton, D., McMurtry, G. & Goff, F. Large variations in vent fluid CO2/3He ratios signal rapid changes in magma chemistry at Loihi seamount, Hawaii. Nature 396, 359–362 (1998). https://doi.org/10.1038/24603

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing