Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A meteorite from the Cretaceous/Tertiary boundary


Cretaceous/Tertiary boundary sediments are now widely recognized to contain the record of a large asteroid or comet impact event1, probably at the site of the Chicxulub crater on the Yucatan peninsula2. After nearly two decades of intensive research, however, much remains unknown about the specific nature of the projectile and of the impact event itself. Here we describe a 2.5-mm fossil meteorite found in sediments retrieved from the Cretaceous/Tertiary boundary in the North Pacific Ocean that we infer may be a piece of the projectile responsible for the Chicxulub crater. Geochemical and petrographic analyses of this meteorite indicate that it probably came from a typical metal- and sulphide-rich carbonaceous chondrite rather than the porous aggregate type of interplanetary dust considered typical of cometary materials3. The fact that meteorite survival should be enhanced by impacts at low (asteroidal) velocities4 also implies that this meteorite had an asteroidal rather than a cometary origin.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Palaeoreconstruction map.
Figure 2: Photograph of separated meteorite and surrounding clays.
Figure 3: Backscatter electron images of polished sections from the fossil meteorite.


  1. 1

    Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Hildebrand, A. R. et al. Chicxulub crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19, 867–871 (1991).

    ADS  Article  Google Scholar 

  3. 3

    Brownlee, D. E. Cosmic dust: collection and research. Annu. Rev. Earth Planet. Sci. 13, 147–173 (1985).

    ADS  Article  Google Scholar 

  4. 4

    Pierazzo, E., Kring, D. A. & Melosh, H. J. Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases. J. Geophys. Res. E (submitted).

  5. 5

    Rea, D. K., Leinen, M. & Janecek, T. R. Geologic approach to the long-term history of atmospheric circulation. Science 227, 721–725 (1985).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Kyte, F. T., Bostwick, J. A. & Zhou, L. The Cretaceous-Tertiary boundary on the Pacific plate: composition and distribution of impact debris. Geol. Soc. Am. Spec. Pap 307, 389–401 (1996).

    Google Scholar 

  7. 7

    Kyte, F. T., Bostwick, J. A. & Zhou, L. Identification of the Cretaceous-Tertiary boundary at ODP Site 886, ODP Site 803, and DSDP Site 576. Proc. ODP Sci. Res. 145, 427–434 (1995).

    CAS  Google Scholar 

  8. 8

    Bostwick, J. A. & Kyte, F. T. The size and abundance of shocked quartz in Cretaceous-Tertiary boundary sediments from the Pacific basin. Geol. Soc. Am. Spec. Pap. 307, 403–415 (1996).

    Google Scholar 

  9. 9

    Kyte, F. T. & Bostwick, J. A. Magnesioferrite spinel in Cretaceous-Tertiary boundary sediments of the Pacific basin: Hot, early condensates of the Chicxulub impact? Earth Planet. Sci. Lett. 132, 113–127 (1995).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Thorslund, P. & Wickman, F. E. Middle Ordovician chondrite in fossiliferous limestone from Brunflo, central Sweden. Nature 289, 285–286 (1981).

    ADS  Article  Google Scholar 

  11. 11

    Thorslund, P., Wickman, F. E. & Nystrom, J. A. The Ordovician chondrite from Brunflo, central Sweden, I. General description and primary minerals. Lithos 17, 87–100 (1984).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Blanchard, M. B., Brownlee, D. E., Bunch, T. E., Hodge, P. W. & Kyte, F. T. Meteroid ablation spheres from deep-sea sediments. Earth Planet. Sci. Lett. 46, 178–190 (1980).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Zolensky, M., Barrett, R. & Browning, L. Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochim. Cosmochim. Acta 57, 3123–3148 (1993).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Kellemeyn, G. W., Rubin, A. E. & Wasson, J. T. The compositional classification of chondrites: V. The Karronda (CK) group of carbonaceous chondrites. Geochim. Cosmochim. Acta 55, 893–904 (1991).

    Article  Google Scholar 

  15. 15

    Lynne, E. C. & Bonatti, D. Mobility of manganese in diagenesis of deep-sea sediments. Mar. Geol. 3, 457–474 (1965).

    ADS  Article  Google Scholar 

  16. 16

    Deer, W. A., Howie, R. A. & Zussman, J. An Introduction to the Rock-forming Minerals2nd edn (Wiley, New York, 1992).

    Google Scholar 

  17. 17

    Love, S. G. & Brownlee, D. E. Adirect measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Hut, P. et al. Comet showers as a cause of mass extinctions. Nature 329, 118–126 (1987).

    ADS  Article  Google Scholar 

  19. 19

    Schultze, P. H. & Gault, D. E. Prolonged global catastrophes from oblique impacts. Geol. Soc. Am. Spec. Pap. 247, 239–262 (1990).

    Google Scholar 

  20. 20

    Schultz, P. H. & D'Hondt, S. D. Cretaceous-Tertiary (Chicxulub) impact angle and its consequences. Geology 24, 963–967 (1996).

    ADS  Article  Google Scholar 

  21. 21

    Gersonde, R. et al. Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean. Nature 390, 357–363 (1997).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Schuraytz, B. L. et al. Iridium metal in Chicxulub impact melt: forensic chemistry on the K-T smoking gun. Science 271, 1573–1576 (1996).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Robin, E., Froget, L., Jéhanno, C. & Rocchia, R. Evidence for a K/T impact event in the Pacific Ocean. Nature 363, 615–617 (1993).

    ADS  CAS  Article  Google Scholar 

  24. 24

    McSween, H. Y. J Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochim. Cosmochim. Acta 41, 1777–1790 (1977).

    ADS  CAS  Article  Google Scholar 

  25. 25

    McSween, H. Y. J Carbonaceous chondrites of the Ormans type: a metamorphic sequence. Geochim. Cosmochim. Acta. 41, 477–491 (1977).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Weisberg, M. K., Prinz, P., Clayton, R. N. & Mayeda, T. K. The CR (Renazzo-type) carbonaceous chondrite group and its implications. Geochim. Cosmochim. Acta 43, 1761–1770 (1979).

    Article  Google Scholar 

  27. 27

    McSween, H. Y. J Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix. Geochim. Cosmochim. Acta 57, 1567–1586 (1993).

    Article  Google Scholar 

  28. 28

    Grossman, J. N., Rubin, A. E., Nagahara, H. & King, E. A. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Matthews, M. S.) 619–659 (Univ. Arizona Press, Tucson, 1994).

    Google Scholar 

  29. 29

    Wasson, J. T. Meteorites: their Record of Early Solar System History (Freeman, New York, 1985).

    Google Scholar 

  30. 30

    Engrand, C. & Maurette, M. Carbonaceous micrometeorites from Antarctica. Meteoritics 33, 565–580 (1998).

    CAS  Article  Google Scholar 

  31. 31

    Kellemeyn, G. W. & Wasson, J. T. The compositional classification of chondrites-I. The carbonaceous chondrite groups. Geochim. Cosmochim. Acta 45, 1217–1230 (1981).

    ADS  Article  Google Scholar 

Download references


This manuscript benefited significantly from discussions with A. E. Rubin and comments from H. McSween, E. Pierazzo and M. Grady. This work was supported by the Geology and Paleontology Program of the National Science Foundation. Curation of DSDP cores is supported by the NSF.

Author information



Corresponding author

Correspondence to Frank T. Kyte.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kyte, F. A meteorite from the Cretaceous/Tertiary boundary. Nature 396, 237–239 (1998).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing