Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

KSHV-transformed primary effusion lymphoma cells induce a VEGF-dependent angiogenesis and establish functional gap junctions with endothelial cells

Abstract

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of primary effusion lymphoma (PEL) and of Kaposi's sarcoma. PEL is an aggressive proliferation of B cells with poor prognosis. We evaluated both in vitro and in vivo the potential role of angiogenic factors secreted by PEL cells, that is, their interaction with endothelial cells and their implication in the invasive behavior of tumoral cells. In vitro, PEL-induced angiogenesis is dependent on vascular endothelial growth factor (VEGF) and VEGF receptors. However, although PEL cells produce VEGF and basic fibroblast growth factor (b-FGF) transcripts, they only secrete VEGF in vitro. In vivo, very high levels of both VEGF and b-FGF were found in the ascitic fluid of NOD/SCID mice injected with PEL cells. We then show evidence of cell adhesion and gap junction-mediated heterocellular communication between PEL cells and endothelial cells. Finally, we show that PEL cells extravasate through the endothelial barrier and that the specific tyrosine kinase inhibitor of VEGF receptors, PTK-787/ZK-222584, the anti-VEGF antibody, bevacizumab or the gap junction inhibitor 18-α-glycyrrhetinic acid, partially attenuate PEL cell extravasation. Angiogenesis, cell adhesion and communication likely contribute to the development of PEL and represent potential therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM et al. Identification of herpesvirus-like DNA sequences in AIDS associated Kaposi's sarcoma. Science 1994; 266: 1865–1869.

    Article  CAS  PubMed  Google Scholar 

  2. Ansari MQ, Dawson DB, Nador R, Rutherford C, Schneider NR, Latimer MJ et al. Primary body cavity-based AIDS-related lymphomas. Am J Clin Pathol 1996; 105: 221–229.

    Article  CAS  PubMed  Google Scholar 

  3. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM . Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS related body-cavity-based lymphomas. N Engl J Med 1995; 332: 1186–1191.

    Article  CAS  PubMed  Google Scholar 

  4. Cesarman E, Nador RG, Aozasa K, Delsol G, Said JW, Knowles DM . Kaposi's sarcoma-associated herpesvirus in non-AIDS related lymphomas occurring in body cavities. Am J Pathol 1996; 149: 53–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gessain A, Sudaka A, Briere J, Fouchard N, Nicola MA, Rio B et al. Kaposi sarcoma-associated herpes-like virus (human herpesvirus type 8) DNA sequences in multicentric Castleman's disease: is there any relevant association in non-human immunodeficiency virus-infected patients? Blood 1996; 87: 414–416.

    CAS  PubMed  Google Scholar 

  6. Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P et al. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 1995; 86: 1276–1280.

    CAS  PubMed  Google Scholar 

  7. Carbone A, Gloghini A, Vaccher E, Cerri M, Gaidano G, Dalla-Favera R et al. Kaposi's sarcoma-associated herpesvirus/human herpesvirus type 8-positive solid lymphomas: a tissue-based variant of primary effusion lymphoma. J Mol Diagn 2005; 7: 17–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chadburn A, Hyjek E, Mathew S, Cesarman E, Said J, Knowles DM . KSHV-positive solid lymphomas represent an extra-cavitary variant of primary effusion lymphoma. Am J Surg Pathol 2004; 28: 1401–1416.

    Article  PubMed  Google Scholar 

  9. Deloose ST, Smit LA, Pals FT, Kersten MJ, van Noesel CJ, Pals ST . High incidence of Kaposi sarcoma-associated herpesvirus infection in HIV-related solid immunoblastic/plasmablastic diffuse large B-cell lymphoma. Leukemia 2005; 19: 851–855.

    Article  CAS  PubMed  Google Scholar 

  10. Carbone A, Gloghini A . AIDS-related lymphomas: from pathogenesis to pathology. Br J Haematol 2005; 130: 662–670.

    Article  CAS  PubMed  Google Scholar 

  11. Cesarman E . The role of Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) in lymphoproliferative diseases. Recent Results Cancer Res 2002; 159: 27–37.

    Article  CAS  PubMed  Google Scholar 

  12. Folkman J . Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–1186.

    Article  CAS  PubMed  Google Scholar 

  13. Gimbrone M, Leapman S, Cotran R, Folkman J . Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 1972; 136: 261–276.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Folkman J, Watson K, Ingber D, Hanahan D . Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989; 339: 58–61.

    Article  CAS  PubMed  Google Scholar 

  15. Friesel R-E, Maciag T . Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J 1995; 9: 919–925.

    Article  CAS  PubMed  Google Scholar 

  16. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z . Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13: 9–22.

    Article  CAS  PubMed  Google Scholar 

  17. Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 1994; 87: 503–508.

    Article  CAS  PubMed  Google Scholar 

  18. Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 1999; 93: 3064–3073.

    CAS  PubMed  Google Scholar 

  19. Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999; 341: 1565–1571.

    Article  CAS  PubMed  Google Scholar 

  20. Ribatti D, Vacca A, Nico B, Fanelli M, Roncali L, Dammacco F . Angiogenesis spectrum in the stroma of B-cell non Hodgkin's lymphomas: an immunohistochemical and structural study. Eur J Haematol 1996; 56: 45–53.

    Article  CAS  PubMed  Google Scholar 

  21. Salven P, Teerenhovi L, Joensuu H . A high pretreatment serum basic fibroblast growth factor concentration is an independent predictor of poor prognosis in non-Hodgkin's lymphoma. Blood 1999; 94: 3334–3339.

    CAS  PubMed  Google Scholar 

  22. Salven P, Orpana A, Teerenhovi L, Joensuu H . Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis n non-Hodgkin lymphoma: a single-institution study of 200 patients. Blood 2000; 96: 3712–3718.

    CAS  PubMed  Google Scholar 

  23. Perez-Atayde A-R, Sallan S-E, Tedrow U, Connors S, Allred E, Folkman J . Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol 1997; 150: 815–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Padro T, Ruiz S, Bieker R, Bürger H, Steins M, Kienast J et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 2000; 95: 2637–2644.

    CAS  PubMed  Google Scholar 

  25. Hussong J-W, Rodgers G-M, Shami PJ . Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000; 95: 309–313.

    CAS  PubMed  Google Scholar 

  26. Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000; 96: 2240–2245.

    CAS  PubMed  Google Scholar 

  27. Chen H, Treweeke AT, West DC, Till KJ, Cawley JC, Zuzel M et al. In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukemia cells. Blood 2000; 96: 3181–3187.

    CAS  PubMed  Google Scholar 

  28. Kini A-R, Kay N-E, Peterson L-C . Increased bone marrow angiogenesis in B cell chronic lymphocytic leukemia. Leukemia 2000; 14: 1414–1418.

    Article  CAS  PubMed  Google Scholar 

  29. Molica S, Vacca A, Ribatti D, Cuneo A, Cavazzini F, Levato D et al. Prognostic value of enhanced bone marrow angiogenesis in early B-cell chronic lymphocytic leukemia. Blood 2002; 100: 3344–3351.

    Article  CAS  PubMed  Google Scholar 

  30. Aoki Y, Tosato G . Vascular endothelial growth factor/vascular permeability factor in the pathogenesis of primary effusion lymphomas. Leuk Lymphoma 2001; 41: 229–237.

    Article  CAS  PubMed  Google Scholar 

  31. Dyson OF, Bryan BA, Lambert PJ, Ford PW, Akula SM . Beta1 integrins mediate tubule formation induced by supernatants derived from KSHV-infected cells. Intervirology 2007; 50: 245–253.

    Article  CAS  PubMed  Google Scholar 

  32. Ye FC, Blackbourn DJ, Mengel M, Xie JP, Qian LW, Greene W et al. Kaposi's sarcoma-associated herpesvirus promotes angiogenesis by inducing angiopoietin-2 expression via AP-1 and Ets1. J Virol 2007; 81: 3980–3991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saez J-C, Connor J-A, Spray D-C, Bennett M-V . Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci USA 1989; 86: 2708–2712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yeager M, Unger V-M, Falk M-M . Synthesis, assembly and structure of gap junction intercellular channels. Curr Opin Struct Biol 1998; 8: 517–524.

    Article  CAS  PubMed  Google Scholar 

  35. Paul D-L . New functions for gap junctions. Curr Opin Cell Biol 1995; 7: 665–672.

    Article  CAS  PubMed  Google Scholar 

  36. Kumar N-M, Gilula N-B . The gap junction communication channel. Cell 1996; 84: 381–388.

    Article  CAS  PubMed  Google Scholar 

  37. Spray D-C . Molecular physiology of gap junction channels. Clin Exp Pharmacol Physiol 1996; 23: 1038–1040.

    Article  CAS  PubMed  Google Scholar 

  38. Larson D-M, Haudenschild C-C, Beyer E-C . Gap junction messenger RNA expression by vascular wall cells. Circ Res 1990; 66: 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  39. Pepper M-S, Meda P . Basic fibroblast growth factor increases junctional communication and connexin 43 expression in microvascular endothelial cells. J Cell Physiol 1992; 153: 196–205.

    Article  CAS  PubMed  Google Scholar 

  40. Alves L-A, de Carvalho A-C, Savino W . Gap junctions: a novel route for direct cell-cell communication in the immune system? Immunol Today 1998; 19: 269–275.

    Article  CAS  PubMed  Google Scholar 

  41. Saez JC, Branes MC, Corvalan LA, Eugenín EA, González H, Martínez AD et al. Gap junctions in cells of the immune system: structure, regulation and possible functional roles. Braz J Med Biol Res 2000; 33: 447–455.

    Article  CAS  PubMed  Google Scholar 

  42. Guinan E-C, Smith B-R, Davies P-F, Pober J-S . Cytoplasmic transfer between endothelium and lymphocytes: quantitation by flow cytometry. Am J Pathol 1988; 132: 406–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Howie A, Leaver HA, Smith G, Sanderson K, Yap PL, Hunter N et al. Interaction of human monocytes and endothelial cells potentiates the oxidative response to phorbol myristoyl acetate (PMA) and endotoxin in vitro. FEMS Microbiol Immunol 1989; 1: 299–300.

    Article  CAS  PubMed  Google Scholar 

  44. Jara P-I, Boric M-P, Saez J-C . Leukocytes express connexin 43 after activation with lipopolysaccharide and appear to form gap junctions with endothelial cells after ischemia-reperfusion. Proc Natl Acad Sci USA 1995; 92: 7011–7015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Braet K, Paemeleire K, D'Herde K, Sanderson M-J, Leybaert L . Astrocyte–endothelial cell calcium signals conveyed by two signalling pathways. Eur J Neurosci 2001; 13: 79–91.

    CAS  PubMed  Google Scholar 

  46. Little T-L, Xia J, Duling B-R . Dye tracers define differential endothelial and smooth muscle coupling patterns within the arteriolar wall. Circ Res 1995; 76: 498–504.

    Article  CAS  PubMed  Google Scholar 

  47. El-Sabban M-E, Pauli B-U . Cytoplasmic dye transfer between metastatic tumor cells and vascular endothelium. J Cell Biol 1991; 115: 1375–1382.

    Article  CAS  PubMed  Google Scholar 

  48. El-Sabban M-E, Pauli B-U . Adhesion-mediated gap junctional communication between lung metastatic cancer cells and endothelium. Invasion Metastasis 1995; 14: 164–176.

    CAS  Google Scholar 

  49. El-Sabban ME, Merhi RA, Haidar HA, Arnulf B, Khoury H, Basbous J et al. Human T-cell lymphotropic virus type 1-transformed cells induce angiogenesis and establish functional gap junctions with endothelial cells. Blood 2002; 99: 3383–3389.

    Article  CAS  PubMed  Google Scholar 

  50. Arvanitakis L, Mesri EA, Nador RG, Said JW, Asch AS, Knowles DM et al. Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (BC3) harboring Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein-Barr virus. Blood 1996; 88: 2648–2654.

    CAS  PubMed  Google Scholar 

  51. Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D et al. Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 1996; 2: 342–346.

    Article  CAS  PubMed  Google Scholar 

  52. Wu W, Rochford R, Toomey L, Harrington Jr W, Feuer G . Inhibition of HHV-8/KSHV infected primary effusion lymphomas in NOD/SCID mice by azidothymidine and interferon-alpha. Leuk Res 2005; 29: 545–555.

    Article  CAS  PubMed  Google Scholar 

  53. Albini A . Tumor and endothelial cell invasion of basement membranes: the Matrigel chemoinvasion assay as a tool for dissecting molecular mechanisms. Pathol Oncol Res 1998; 4: 230–241.

    Article  CAS  PubMed  Google Scholar 

  54. Schneider P, Jerome M-V, Paysant J, Soria P-C, Vannier J-P . The role of angiogenesis in leukemia proliferation. Am J Pathol 1999; 155: 1007–1008.

    CAS  PubMed  Google Scholar 

  55. Bellamy W-T, Richter L, Frutiger Y, Grogan T-M . Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 1999; 59: 728–733.

    CAS  PubMed  Google Scholar 

  56. Aoki Y, Jaffe ES, Chang Y, Jones K, Teruya-Feldstein J, Moore PS et al. Angiogenesis and hematopoiesis induced by Kaposi's sarcoma-associated herpesvirus-encoded interleukin-6. Blood 1999; 93: 4034–4043.

    CAS  PubMed  Google Scholar 

  57. Liu C, Okruzhnov Y, Li H, Nicholas J . Human herpesvirus 8 (HHV-8)-encoded cytokines induce expression of and autocrine signaling by vascular endothelial growth factor (VEGF) in HHV-8-infected primary-effusion lymphoma cell lines and mediate VEGF-independent antiapoptotic effects. J virol 2001; 75: 10933–10940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hamden KE, Whitman AG, Ford PW, Shelton JG, McCubrey JA, Akula SM . Raf and VEGF: emerging therapeutic targets in Kaposi's sarcoma-associated herpesvirus infection and angiogenesis in hematopoietic and nonhematopoietic tumors. Leukemia 2005; 19: 18–26.

    Article  CAS  PubMed  Google Scholar 

  59. Wang L, Wakisaka N, Tomlinson C, DeWire S, Krall S, Pagano J et al. The Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) K1 protein induces expression of angiogenic and invasion factors. Cancer Res 2004; 64: 2774–2781.

    Article  CAS  PubMed  Google Scholar 

  60. Graeber S-H, Hulser D-F . Connexin transfection induces invasive properties in HeLa cells. Exp Cell Res 1998; 243: 142–149.

    Article  CAS  PubMed  Google Scholar 

  61. Pepper M-S, Spray D-C, Chanson M, Montesano R, Orci L, Meda P . Junctional communication is induced in migrating capillary endothelial cells. J Cell Biol 1989; 109: 3027–3038.

    Article  CAS  PubMed  Google Scholar 

  62. Qian LW, Xie J, Ye F, Gao SJ . Kaposi's sarcoma-associated herpesvirus infection promotes invasion of primary human umbilical vein endothelial cells by inducing matrix metalloproteinases. J Virol 2007; 81: 7001–7010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project is supported by grants from the American University of Beirut (Medical Practice Plan and University Research Board), and by the Lebanese National Council for Scientific Research (LNCSR). HEH is a recipient of a grant from the Lady TATA memorial trust. RM is supported by INSERM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M El-Sabban or A Bazarbachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haddad, L., El Hajj, H., Abou-Merhi, R. et al. KSHV-transformed primary effusion lymphoma cells induce a VEGF-dependent angiogenesis and establish functional gap junctions with endothelial cells. Leukemia 22, 826–834 (2008). https://doi.org/10.1038/sj.leu.2405081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2405081

Keywords

This article is cited by

Search

Quick links