Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

NK cell receptors and their ligands in leukemia

Abstract

Human natural killer (NK) cells are built to kill abnormal cells but to preserve autologous normal cells. To accomplish this task, they are equipped with a large number of inhibiting and activating receptors. Ligation with corresponding ligands will determine whether the NK cell becomes activated to destroy the abnormal cell. This review will focus on the abnormalities of NK cell receptors and their putative ligands found in patients with leukemia, which can lead to an inadequate function of NK cells allowing these malignant cells to escape from NK cell destruction. In recent years it has become clear that NK cells in the haploidentical hematopoietic stem cell transplantation (HSCT) setting are very effective in eliminating residual acute myeloid, but not acute lymphoid, leukemic cells. In this regard, we also reviewed published studies of retrospective cohorts of HSCT investigating the potential beneficial effect of killer-cell immunoglobulin-like receptors (KIRs) and human leukocyte antigen (HLA) ligands on NK alloreactivity. Manipulating NK cell inhibition or activation could lead to new forms of immunotherapy, ultimately leading to the elimination of resistant leukemic cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Murphy WJ, Kumar V, Bennett M . Rejection of bone marrow allografts by mice with severe combined immune deficiency (SCID). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. J Exp Med 1987; 165: 1212–1217.

    CAS  Google Scholar 

  2. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2101.

    Article  CAS  Google Scholar 

  3. Katrinakis G, Kyriakou D, Papadaki H, Kalokyri I, Markidou F, Eliopoulos GD . Defective natural killer cell activity in B-cell chronic lymphocytic leukaemia is associated with impaired release of natural killer cytotoxic factor(s) but not of tumour necrosis factor-alpha. Acta Haematol 1996; 96: 16–23.

    CAS  Google Scholar 

  4. Pierson BA, Miller JS . CD56+bright and CD56+dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis. Blood 1996; 88: 2279–2287.

    CAS  Google Scholar 

  5. Nakajima H, Zhao R, Lund TC, Ward J, Dolan M, Hirsch B et al. The BCR/ABL transgene causes abnormal NK cell differentiation and can be found in circulating NK cells of advanced phase chronic myelogenous leukemia patients. J Immunol 2002; 168: 643–650.

    CAS  Google Scholar 

  6. Costello RT, Sivori S, Marcenaro E, Lafage-Pochitaloff M, Mozziconacci MJ, Reviron D et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 2002; 99: 3661–3667.

    CAS  Google Scholar 

  7. Siegler U, Kalberer CP, Nowbakht P, Sendelov S, Meyer-Monard S, Wodnar-Filipowicz A . Activated natural killer cells from patients with acute myeloid leukemia are cytotoxic against autologous leukemic blasts in NOD/SCID mice. Leukemia 2005; 19: 2215–2222.

    CAS  Google Scholar 

  8. Kiladjian JJ, Bourgeois E, Lobe I, Braun T, Visentin G, Bourhis JH et al. Cytolytic function and survival of natural killer cells are severely altered in myelodysplastic syndromes. Leukemia 2006; 20: 463–470.

    CAS  Google Scholar 

  9. Epling-Burnette PK, Bai F, Painter JS, Rollison D, Salih HR, Krusch M et al. Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors. Blood 2007; 109: 4816–4824.

    CAS  Google Scholar 

  10. Verheyden S, Bernier M, Demanet C . Identification of natural killer cell receptor phenotypes associated with leukemia. Leukemia 2004; 18: 2002–2007.

    CAS  Google Scholar 

  11. Verheyden S, Demanet C . Susceptibility to myeloid and lymphoid leukemia is mediated by distinct inhibitory KIR-HLA ligand interactions. Leukemia 2006; 20: 1437–1438.

    CAS  Google Scholar 

  12. Junevik K, Werlenius O, Hasselblom S, Jacobsson S, Nilsson-Ehle H, Andersson PO . The expression of NK cell inhibitory receptors on cytotoxic T cells in B-cell chronic lymphocytic leukaemia (B-CLL). Ann Hematol 2007; 86: 89–94.

    CAS  Google Scholar 

  13. Chiorean EG, Dylla SJ, Olsen K, Lenvik T, Soignier Y, Miller JS . BCR/ABL alters the function of NK cells and the acquisition of killer immunoglobulin-like receptors (KIRs). Blood 2003; 101: 3527–3533.

    CAS  Google Scholar 

  14. Koh CY, Blazar BR, George T, Welniak LA, Capitini CM, Raziuddin A et al. Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo. Blood 2001; 97: 3132–3137.

    CAS  Google Scholar 

  15. Chang CC, Campoli M, Ferrone S . Classical and nonclassical HLA class I antigen and NK Cell-activating ligand changes in malignant cells: current challenges and future directions. Adv Cancer Res 2005; 93: 189–234.

    CAS  Google Scholar 

  16. Wetzler M, Baer MR, Stewart SJ, Donohue K, Ford L, Stewart CC et al. HLA class I antigen cell surface expression is preserved on acute myeloid leukemia blasts at diagnosis and at relapse. Leukemia 2001; 15: 128–133.

    CAS  Google Scholar 

  17. Brouwer RE, van der Heiden P, Schreuder GM, Mulder A, Datema G, Anholts JD et al. Loss or downregulation of HLA class I expression at the allelic level in acute leukemia is infrequent but functionally relevant, and can be restored by interferon. Hum Immunol 2002; 63: 200–210.

    CAS  Google Scholar 

  18. Vollmer M, Li L, Schmitt A, Greiner J, Reinhardt P, Ringhoffer M et al. Expression of human leucocyte antigens and co-stimulatory molecules on blasts of patients with acute myeloid leukaemia. Br J Haematol 2003; 120: 1000–1008.

    CAS  Google Scholar 

  19. Demanet C, Mulder A, Deneys V, Worsham MJ, Claas FH, Ferrone S . Down-regulation of HLA-A and HLA-Bw6, but not HLA-Bw4, allospecificities in leukemic cells: an escape mechanism from CTL and NK attack?. Blood 2004; 103: 3122–3130.

    CAS  Google Scholar 

  20. Masuda K, Hiraki A, Fujii N, Watanabe T, Tanaka M, Matsue K et al. Loss or down-regulation of HLA class I expression at the allelic level in freshly isolated leukemic blasts. Cancer Sci 2006; 98: 102–108.

    Google Scholar 

  21. Nouri AM, Smith S, Oliver TR, Newland AC, Macey MG . Comparative expression of major histocompatibility complex (MHC) antigens on CD5+ and CD5- B cells in patients with chronic lymphocytic leukaemia (CLL). Eur J Cancer 1998; 34: 1618–1622.

    CAS  Google Scholar 

  22. Faure M, Long EO . KIR2DL4 (CD158d), an NK cell-activating receptor with inhibitory potential. J Immunol 2002; 168: 6208–6214.

    CAS  Google Scholar 

  23. Amiot L, Onno M, Drenou B, Monvoisin C, Fauchet R . HLA-G class I gene expression in normal and malignant hematopoietic cells. Hum Immunol 1998; 59: 524–528.

    CAS  Google Scholar 

  24. Mizuno S, Emi N, Kasai M, Ishitani A, Saito H . Aberrant expression of HLA-G antigen in interferon gamma-stimulated acute myelogenous leukaemia. Br J Haematol 2000; 111: 280–282.

    CAS  Google Scholar 

  25. Polakova K, Krcova M, Kuba D, Russ G . Analysis of HLA-G expression in malignant hematopoietic cells from leukemia patients. Leuk Res 2003; 27: 643–648.

    CAS  Google Scholar 

  26. Nuckel H, Rebmann V, Durig J, Duhrsen U, Grosse-Wilde H . HLA-G expression is associated with an unfavorable outcome and immunodeficiency in chronic lymphocytic leukemia. Blood 2005; 105: 1694–1698.

    Google Scholar 

  27. Majumder D, Bandyopadhyay D, Chandra S, Mukherjee N, Banerjee S . Lack of HLA-E surface expression is due to deficiency of HLA-E transcripts in the malignant hematopoietic cells of leukemic patients. Leuk Res 2006; 30: 242–245.

    CAS  Google Scholar 

  28. Mullighan CG, Petersdorf EW . Genomic polymorphism and allogeneic hematopoietic transplantation outcome. Biol Blood Marrow Transplant 2006; 12: 19–27.

    Google Scholar 

  29. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 2005; 436: 709–713.

    CAS  Google Scholar 

  30. Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, Aloisi T et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood 2007; 110: 433–440.

    CAS  Google Scholar 

  31. Bishara A, De Santis D, Witt CC, Brautbar C, Christiansen FT, Or R et al. The beneficial role of inhibitory KIR genes of HLA class I NK epitopes in haploidentically mismatched stem cell allografts may be masked by residual donor-alloreactive T cells causing GVHD. Tissue Antigens 2004; 63: 204–211.

    CAS  Google Scholar 

  32. Davies SM, Ruggieri L, DeFor T, Wagner JE, Weisdorf DJ, Miller JS et al. Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Blood 2002; 100: 3825–3827.

    CAS  Google Scholar 

  33. Giebel S, Locatelli F, Lamparelli T, Velardi A, Davies S, Frumento G et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood 2003; 102: 814–819.

    CAS  Google Scholar 

  34. Bornhauser M, Schwerdtfeger R, Martin H, Frank KH, Theuser C, Ehninger G . Role of KIR ligand incompatibility in hematopoietic stem cell transplantation using unrelated donors. Blood 2004; 103: 2860–2862.

    Google Scholar 

  35. Schaffer M, Malmberg KJ, Ringden O, Ljunggren HG, Remberger M . Increased infection-related mortality in KIR-ligand-mismatched unrelated allogeneic hematopoietic stem-cell transplantation. Transplantation 2004; 78: 1081–1085.

    Google Scholar 

  36. Beelen DW, Ottinger HD, Ferencik S, Elmaagacli AH, Peceny R, Trenschel R et al. Genotypic inhibitory killer immunoglobulin-like receptor ligand incompatibility enhances the long-term antileukemic effect of unmodified allogeneic hematopoietic stem cell transplantation in patients with myeloid leukemias. Blood 2005; 105: 2594–2600.

    CAS  Google Scholar 

  37. Farag SS, Bacigalupo A, Eapen M, Hurley C, Dupont B, Caligiuri MA et al. KIR Study Group, Center for International Blood and Marrow Transplantation Research. The effect of KIR ligand incompatibility on the outcome of unrelated donor transplantation: a report from the center for international blood and marrow transplant research, the European blood and marrow transplant registry, and the Dutch registry. Biol Blood Marrow Transplant 2006; 12: 876–884.

    CAS  Google Scholar 

  38. Kroger N, Binder T, Zabelina T, Wolschke C, Schieder H, Renges H et al. Low number of donor activating killer immunoglobulin-like receptors (KIR) genes but not KIR-ligand mismatch prevents relapse and improves disease-free survival in leukemia patients after in vivo T-cell depleted unrelated stem cell transplantation. Transplantation 2006; 82: 1024–1030.

    Google Scholar 

  39. Grau R, Lang KS, Wernet D, Lang P, Niethammer D, Pusch CM et al. Cytotoxic activity of natural killer cells lacking killer-inhibitory receptors for self-HLA class I molecules against autologous hematopoietic stem cells in healthy individuals. Exp Mol Pathol 2004; 76: 90–98.

    CAS  Google Scholar 

  40. Hsu KC, Gooley T, Malkki M, Pinto-Agnello C, Dupont B, Bignon JD et al. International Histocompatibility Working Group. KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy. Biol Blood Marrow Transplant 2006; 12: 828–836.

    CAS  Google Scholar 

  41. Cook MA, Milligan DW, Fegan CD, Darbyshire PJ, Mahendra P, Craddock CF et al. The impact of donor KIR and patient HLA-C genotypes on outcome following HLA-identical sibling hematopoietic stem cell transplantation for myeloid leukemia. Blood 2004; 103: 1521–1526.

    CAS  Google Scholar 

  42. Hsu KC, Keever-Taylor CA, Wilton A, Pinto C, Heller G, Arkun K et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood 2005; 105: 4878–4884.

    CAS  Google Scholar 

  43. Miller JS, Cooley S, Parham P, Farag SS, Verneris MR, McQueen KL et al. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood 2007; 109: 5058–5061.

    CAS  Google Scholar 

  44. Verheyden S, Schots R, Duquet W, Demanet C . A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after related HLA-identical hematopoietic stem cell transplantation. Leukemia 2005; 19: 1446–1451.

    CAS  Google Scholar 

  45. Gagne K, Brizard G, Gueglio B, Milpied N, Herry P, Bonneville F et al. Relevance of KIR gene polymorphisms in bone marrow transplantation outcome. Hum Immunol 2002; 63: 271–280.

    CAS  Google Scholar 

  46. Giebel S, Nowak I, Wojnar J, Markiewicz M, Dziaczkowska J, Wylezol I et al. Impact of activating killer immunoglobulin-like receptor genotype on outcome of unrelated donor-hematopoietic cell transplantation. Transplant Proc 2006; 38: 287–291.

    CAS  Google Scholar 

  47. Yan Y, Steinherz P, Klingemann HG, Dennig D, Childs BH, McGuirk J et al. Antileukemia activity of a natural killer cell line against human leukemias. Clin Cancer Res 1998; 4: 2859–2868.

    CAS  Google Scholar 

  48. Reid GS, Bharya S, Klingemann HG, Schultz KR . Differential killing of pre-B acute lymphoblastic leukaemia cells by activated NK cells and the NK-92 ci cell line. Clin Exp Immunol 2002; 129: 265–271.

    CAS  Google Scholar 

  49. Romanski A, Bug G, Becker S, Kampfmann M, Seifried E, Hoelzer D et al. Mechanisms of resistance to natural killer cell-mediated cytotoxicity in acute lymphoblastic leukemia. Exp Hematol 2005; 33: 344–352.

    CAS  Google Scholar 

  50. Klingemann HG, Wong E, Maki G . A cytotoxic NK-cell line (NK-92) for ex vivo purging of leukemia from blood. Biol Blood Marrow Transplant 1996; 2: 68–75.

    CAS  Google Scholar 

  51. Maki G, Tam YK, Berkahn L, Klingemann HG . Ex vivo purging with NK-92 prior to autografting for chronic myelogenous leukemia. Bone Marrow Transplant 2003; 31: 1119–1125.

    CAS  Google Scholar 

  52. Suck G . Novel approaches using natural killer cells in cancer therapy. Semin Cancer Biol 2006; 16: 412–418.

    CAS  Google Scholar 

  53. Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A et al. Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 2005; 105: 2066–2073.

    CAS  Google Scholar 

  54. Nowbakht P, Ionescu MC, Rohner A, Kalberer CP, Rossy E, Mori L et al. Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 2005; 105: 3615–3622.

    CAS  Google Scholar 

  55. Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG et al. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 2003; 102: 1389–1396.

    CAS  Google Scholar 

  56. Fauriat C, Just-Landi S, Mallet F, Arnoulet C, Sainty D, Olive D et al. Deficient expression of NCR in NK cells from acute myeloid leukemia: Evolution during leukemia treatment and impact of leukemia cells in NCR dull phenotype induction. Blood 2007; 109: 323–330.

    CAS  Google Scholar 

  57. Sconocchia G, Lau M, Provenzano M, Rezvani K, Wongsena W, Fujiwara H et al. The antileukemia effect of HLA-matched NK and NK-T cells in chronic myelogenous leukemia involves NKG2D-target-cell interactions. Blood 2005; 106: 3666–3672.

    CAS  Google Scholar 

  58. Groh V, Wu J, Yee C, Spies T . Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002; 419: 734–738.

    CAS  Google Scholar 

  59. Raffaghello L, Prigione I, Airoldi I, Camoriano M, Levreri I, Gambini C et al. Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia 2004; 6: 558–568.

    CAS  Google Scholar 

  60. Poggi A, Venturino C, Catellani S, Clavio M, Miglino M, Gobbi M et al. Vdelta1 T lymphocytes from B-CLL patients recognize ULBP3 expressed on leukemic B cells and up-regulated by trans-retinoic acid. Cancer Res 2004; 64: 9172–9179.

    CAS  Google Scholar 

  61. Bordignon C, Carlo-Stella C, Colombo MP, De Vincentiis A, Lanata L, Lemoli RM et al. Cell therapy: achievements and perspectives. Haematologica 1999; 84: 1110–11149.

    CAS  Google Scholar 

  62. Lauria F, Raspadori D, Rondelli D, Ventura MA, Foa R . In vitro susceptibility of acute leukemia cells to the cytotoxic activity of allogeneic and autologous lymphokine activated killer (LAK) effectors: correlation with the rate and duration of complete remission and with survival. Leukemia 1994; 8: 724–728.

    CAS  Google Scholar 

  63. Pierson BA, Miller JS . The role of autologous natural killer cells in chronic myelogenous leukemia. Leuk Lymphoma 1997; 27: 387–399.

    CAS  Google Scholar 

  64. Benyunes MC, Massumoto C, York A, Higuchi CM, Buckner CD, Thompson JA et al. Interleukin-2 with or without lymphokine-activated killer cells as consolidative immunotherapy after autologous bone marrow transplantation for acute myelogenous leukemia. Bone Marrow Transplant 1993; 12: 159–163.

    CAS  Google Scholar 

  65. Beaujean F, Bernaudin F, Kuentz M, Lemerle S, Cordonnier C, Le Forestier C et al. Successful engraftment after autologous transplantation of 10-day cultured bone marrow activated by interleukin 2 in patients with acute lymphoblastic leukemia. Bone Marrow Transplant 1995; 15: 691–696.

    CAS  Google Scholar 

  66. Boughton BJ, Simpson AW . Acute myeloblastic leukaemia: graft-versus-host and graft-versus-leukaemia responses to autologous IL-2 activated lymphocytes in rapid and slow disease. Cytokines Cell Mol Ther 1999; 5: 1–6.

    CAS  Google Scholar 

  67. Margolin KA, Van Besien K, Wright C, Niland J, Champlin R, Fung HC et al. Interleukin-2-activated autologous bone marrow and peripheral blood stem cells in the treatment of acute leukemia and lymphoma. Biol Blood Marrow Transplant 1999; 5: 36–45.

    CAS  Google Scholar 

  68. Hajek R, Zackova D, Buchler T, Penka M, Krahulcova E, Koristek Z et al. Treatment of chronic myeloid leukemia with autologous transplantation using peripheral blood stem cells or bone marrow cultured in IL-2 followed by IL-2, GM-CSF, and IFN-alpha administration. Med Oncol 2003; 20: 69–76.

    CAS  Google Scholar 

  69. Waldmann T . The contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for the immunotherapy of rheumatological diseases. Arthritis Res 2002; 4 (Suppl 3): S161–S167.

    Google Scholar 

  70. Alpdogan O, Eng JM, Muriglan SJ, Willis LM, Hubbard VM, Tjoe KH et al. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood 2005; 105: 865–873.

    CAS  Google Scholar 

  71. Matikainen S, Paananen A, Miettinen M, Kurimoto M, Timonen T, Julkunen I et al. IFN-alpha and IL-18 synergistically enhance IFN-gamma production in human NK cells: differential regulation of Stat4 activation and IFN-gamma gene expression by IFN-alpha and IL-12. Eur J Immunol 2001; 31: 2236–2245.

    CAS  Google Scholar 

  72. Sivori S, Cantoni C, Parolini S, Marcenaro E, Conte R, Moretta L et al. IL-21 induces both rapid maturation of human CD34+ cell precursors towards NK cells and acquisition of surface killer Ig-like receptors. Eur J Immunol 2003; 33: 3439–3447.

    CAS  Google Scholar 

  73. Fehniger TA, Cooper MA, Caligiuri MA . Interleukin-2 and interleukin-15: immunotherapy for cancer. Cytokine Growth Factor Rev 2002; 13: 169–183.

    CAS  Google Scholar 

  74. Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med 1998; 187: 2065–2072.

    CAS  Google Scholar 

  75. Sutherland CL, Chalupny NJ, Schooley K, VandenBos T, Kubin M, Cosman D . UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells. J Immunol 2002; 168: 671–679.

    CAS  Google Scholar 

  76. Song H, Hur DY, Kim KE, Park H, Kim T, Kim CW et al. IL-2/IL-18 prevent the down-modulation of NKG2D by TGF-beta in NK cells via the c-Jun N-terminal kinase (JNK) pathway. Cell Immunol 2006; 242: 39–45.

    CAS  Google Scholar 

  77. Mingari MC, Vitale C, Cantoni C, Bellomo R, Ponte M, Schiavetti F et al. Interleukin-15-induced maturation of human natural killer cells from early thymic precursors: selective expression of CD94/NKG2-A as the only HLA class I-specific inhibitory receptor. Eur J Immunol 1997; 27: 1374–1380.

    CAS  Google Scholar 

  78. Burgess SJ, Marusina AI, Pathmanathan I, Borrego F, Coligan JE . IL-21 down-regulates NKG2D/DAP10 expression on human NK and CD8+ T cells. J Immunol 2006; 176: 1490–1497.

    CAS  Google Scholar 

  79. Rohner A, Langenkamp U, Siegler U, Kalberer CP, Wodnar-Filipowicz A . Differentiation-promoting drugs up-regulate NKG2D ligand expression and enhance the susceptibility of acute myeloid leukemia cells to natural killer cell-mediated lysis. Leuk Res 2007; 31: 1393–1402.

    CAS  Google Scholar 

  80. Golay J, Manganini M, Facchinetti V, Gramigna R, Broady R, Borleri G et al. Rituximab-mediated antibody-dependent cellular cytotoxicity against neoplastic B cells is stimulated strongly by interleukin-2. Haematologica 2003; 88: 1002–1012.

    CAS  Google Scholar 

  81. Lang P, Barbin K, Feuchtinger T, Greil J, Peipp M, Zunino SJ et al. Chimeric CD19 antibody mediates cytotoxic activity against leukemic blasts with effector cells from pediatric patients who received T-cell-depleted allografts. Blood 2004; 103: 3982–3985.

    CAS  Google Scholar 

  82. Fischer L, Penack O, Gentilini C, Nogai A, Muessig A, Thiel E et al. The anti-lymphoma effect of antibody-mediated immunotherapy is based on an increased degranulation of peripheral blood natural killer (NK) cells. Exp Hematol 2006; 34: 753–759.

    CAS  Google Scholar 

  83. Schlenzka J, Moehler TM, Kipriyanov SM, Kornacker M, Benner A, Bahre A et al. Combined effect of recombinant CD19 x CD16 diabody and thalidomide in a preclinical model of human B cell lymphoma. Anticancer Drugs 2004; 15: 915–919.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors' work was supported by a grant from the ‘Fonds voor Wetenschappelijk Onderzoek Vlaanderen’ (FWO-Vlaanderen; no. G.0481.06) and a clinical research grant from the ‘Stichting tegen Kanker’ (SCIE 2005-33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Demanet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verheyden, S., Demanet, C. NK cell receptors and their ligands in leukemia. Leukemia 22, 249–257 (2008). https://doi.org/10.1038/sj.leu.2405040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2405040

Keywords

This article is cited by

Search

Quick links