Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Pim2 complements Flt3 wild-type receptor in hematopoietic progenitor cell transformation

Abstract

Pim2 is a serine/threonine kinase expressed at high levels in several malignancies including acute leukemia. Pim2 protein is induced by oncogenic Fms-like tyrosine kinase-3 (Flt3)-internal tandem duplications (ITD), but not by Flt3 wild-type receptor (Flt3-Wt) in response to Flt3 ligand (FL). Here we show that Pim2 can complement Flt3-Wt signaling and induce transformation similar to Flt3-ITD in myeloid cells. Our data demonstrate that Pim2 is necessary but not sufficient for Flt3-ITD-induced transformation of 32D cells and primary bone marrow cells as assessed by colony assays. Pim2-induced clonogenic growth of FL-treated 32D-Flt3-Wt cells. Proliferation of 32D-Flt3-Wt cells was significantly enhanced in FL-treated Pim2-overexpressing cells. This increase was associated with enhanced S-phase cell cycle progression. Pim2-overexpressing cells were resistant to apoptosis induced by growth factor deprivation or treatment with tyrosine kinase inhibitor (PKC412). The Flt3 point mutant D835Y, which is not able to support colony growth of myeloid cells, also induced clonogenic growth in the presence of Pim2. In conclusion, Pim2 is an important target of Flt3-ITD-induced transformation, and overexpression of Pim2 together with Flt3-Wt or D835Y receptor mimics Flt3-ITD-mediated transformation. Pim2 complements with Flt3-Wt signaling to induce proliferation by enhancing G1/S-phase progression of the cell cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Stirewalt DL, Radich JP . The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 2003; 3: 650–665.

    Article  CAS  Google Scholar 

  2. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Muller C et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 2000; 96: 3907–3914.

    CAS  Google Scholar 

  3. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 2000; 19: 624–631.

    Article  CAS  Google Scholar 

  4. Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 2003; 101: 3164–3173.

    Article  CAS  Google Scholar 

  5. Allen JD, Verhoeven E, Domen J, van der Valk M, Berns A . Pim-2 transgene induces lymphoid tumors, exhibiting potent synergy with c-myc. Oncogene 1997; 15: 1133–1141.

    Article  CAS  Google Scholar 

  6. Dautry F, Weil D, Yu J, Dautry-Varsat A . Regulation of pim and myb mRNA accumulation by interleukin 2 and interleukin 3 in murine hematopoietic cell lines. J Biol Chem 1988; 263: 17615–17620.

    CAS  Google Scholar 

  7. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    Article  CAS  Google Scholar 

  8. Choudhary C, Schwable J, Brandts C, Tickenbrock L, Sargin B, Kindler T et al. AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood 2005; 106: 265–273.

    Article  CAS  Google Scholar 

  9. Grundler R, Miething C, Thiede C, Peschel C, Duyster J . FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood 2005; 105: 4792–4799.

    Article  CAS  Google Scholar 

  10. Mikkers H, Nawijn M, Allen J, Brouwers C, Verhoeven E, Jonkers J et al. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol 2004; 24: 6104–6115.

    Article  CAS  Google Scholar 

  11. Lilly M, Le T, Holland P, Hendrickson SL . Sustained expression of the pim-1 kinase is specifically induced in myeloid cells by cytokines whose receptors are structurally related. Oncogene 1992; 7: 727–732.

    CAS  Google Scholar 

  12. Miura O, Miura Y, Nakamura N, Quelle FW, Witthuhn BA, Ihle JN et al. Induction of tyrosine phosphorylation of Vav and expression of Pim-1 correlates with Jak2-mediated growth signaling from the erythropoietin receptor. Blood 1994; 84: 4135–4141.

    CAS  Google Scholar 

  13. Shirogane T, Fukada T, Muller JM, Shima DT, Hibi M, Hirano T . Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 1999; 11: 709–719.

    Article  CAS  Google Scholar 

  14. White E . The pims and outs of survival signaling: role for the Pim-2 protein kinase in the suppression of apoptosis by cytokines. Genes Dev 2003; 17: 1813–1816.

    Article  CAS  Google Scholar 

  15. Fox CJ, Hammerman PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB . The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Genes Dev 2003; 17: 1841–1854.

    Article  CAS  Google Scholar 

  16. Yan B, Zemskova M, Holder S, Chin V, Kraft A, Koskinen PJ et al. The PIM-2 kinase phosphorylates BAD on serine 112 and reverses BAD-induced cell death. J Biol Chem 2003; 278: 45358–45367.

    Article  CAS  Google Scholar 

  17. Lilly M, Kraft A . Enforced expression of the Mr 33,000 Pim-1 kinase enhances factor-independent survival and inhibits apoptosis in murine myeloid cells. Cancer Res 1997; 57: 5348–5355.

    CAS  Google Scholar 

  18. Grignani F, Kinsella T, Mencarelli A, Valtieri M, Riganelli D, Grignani F et al. High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res 1998; 58: 14–19.

    CAS  Google Scholar 

  19. Tickenbrock L, Schwable J, Wiedehage M, Steffen B, Sargin B, Choudhary C et al. Flt3 tandem duplication mutations cooperate with Wnt signaling in leukemic signal transduction. Blood 2005; 105: 3699–3706.

    Article  CAS  Google Scholar 

  20. Muller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol 2004; 24: 2890–2904.

    Article  Google Scholar 

  21. Adam M, Pogacic V, Bendit M, Chappuis R, Nawijn MC, Duyster J et al. Targeting PIM kinases impairs survival of hematopoietic cells transformed by kinase inhibitor-sensitive and kinase inhibitor-resistant forms of Fms-like tyrosine kinase 3 and BCR/ABL. Cancer Res 2006; 66: 3828–3835.

    Article  CAS  Google Scholar 

  22. Fenski R, Flesch K, Serve S, Mizuki M, Oelmann E, Kratz-Albers K et al. Constitutive activation of FLT3 in acute myeloid leukaemia and its consequences for growth of 32D cells. Br J Haematol 2000; 108: 322–330.

    Article  CAS  Google Scholar 

  23. Moroy T, Grzeschiczek A, Petzold S, Hartmann KU . Expression of a Pim-1 transgene accelerates lymphoproliferation and inhibits apoptosis in lpr/lpr mice. Proc Natl Acad Sci USA 1993; 90: 10734–10738.

    Article  CAS  Google Scholar 

  24. Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL, Kitamura T . STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J 1999; 18: 4754–4765.

    Article  CAS  Google Scholar 

  25. Nieborowska-Skorska M, Hoser G, Kossev P, Wasik MA, Skorski T . Complementary functions of the antiapoptotic protein A1 and serine/threonine kinase pim-1 in the BCR/ABL-mediated leukemogenesis. Blood 2002; 99: 4531–4539.

    Article  CAS  Google Scholar 

  26. Winn LM, Lei W, Ness SA . Pim-1 phosphorylates the DNA binding domain of c-Myb. Cell Cycle 2003; 2: 258–262.

    Article  CAS  Google Scholar 

  27. Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A, Kuchino Y . Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the Pim-1-mediated activation of the c-Myc signaling pathway. J Biol Chem 1999; 274: 18659–18666.

    Article  CAS  Google Scholar 

  28. Bachmann M, Hennemann H, Xing PX, Hoffmann I, Moroy T . The oncogenic serine/threonine kinase Pim-1 phosphorylates and inhibits the activity of Cdc25C-associated kinase 1 (C-TAK1): a novel role for Pim-1 at the G2/M cell cycle checkpoint. J Biol Chem 2004; 279: 48319–48328.

    Article  CAS  Google Scholar 

  29. Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS . Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta 2002; 1593: 45–55.

    Article  CAS  Google Scholar 

  30. Bhattacharya N, Wang Z, Davitt C, McKenzie IF, Xing PX, Magnuson NS . Pim-1 associates with protein complexes necessary for mitosis. Chromosoma 2002; 111: 80–95.

    Article  CAS  Google Scholar 

  31. Brandts CH, Sargin B, Rode M, Biermann C, Lindtner B, Schwable J et al. Constitutive activation of Akt by Flt3 internal tandem duplications is necessary for increased survival, proliferation, and myeloid transformation. Cancer Res 2005; 65: 9643–9650.

    Article  CAS  Google Scholar 

  32. Hammerman PS, Fox CJ, Birnbaum MJ, Thompson CB . Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood 2005; 105: 4477–4483.

    Article  CAS  Google Scholar 

  33. Radomska HS, Basseres DS, Zheng R, Zhang P, Dayaram T, Yamamoto Y et al. Block of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med 2006; 203: 371–381.

    Article  CAS  Google Scholar 

  34. Peltola KJ, Paukku K, Aho TL, Ruuska M, Silvennoinen O, Koskinen PJ . Pim-1 kinase inhibits STAT5-dependent transcription via its interactions with SOCS1 and SOCS3. Blood 2004; 103: 3744–3750.

    Article  CAS  Google Scholar 

  35. Chen XP, Losman JA, Cowan S, Donahue E, Fay S, Vuong BQ et al. Pim serine/threonine kinases regulate the stability of Socs-1 protein. Proc Natl Acad Sci USA 2002; 99: 2175–2180.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor/Dr M Eilers (Institute for Molecular Biology and Tumor Research, University of Marburg, Marburg) for providing pSuper vector; C Choudhary for 32D-Flt3-TKD mutant cell lines; Dr LTickenbrock for helping with densitometric analysis and S Doths for technical assistance. This work is supported by the Deutsche Forschungsgemeinschaft (Se 600/3-1, SFB293), Thyssen-Stiftung (10.05.2.178), Deutsche Krebshilfe (10-2258,10-1539, 106697) and the Medical Faculty of the University of Münster (IZKF Ser2/041/04, IMF Sa 110404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Serve.

Additional information

Authors' contribution SA, CMT and HS designed the study and SA performed most of the experiments and analyzed the data. SA, SK, HS wrote the manuscript. NB, NGR, WB, HS and CMT provided tools and analysis methods. All authors checked the final version of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, S., Koschmieder, S., Bäumer, N. et al. Pim2 complements Flt3 wild-type receptor in hematopoietic progenitor cell transformation. Leukemia 22, 78–86 (2008). https://doi.org/10.1038/sj.leu.2404988

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404988

Keywords

This article is cited by

Search

Quick links