Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional Control and Signal Transduction

Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells

Abstract

The serine/threonine kinase Akt, a downstream effector of phosphatidylinositol 3-kinase (PI3K), is known to play an important role in antiapoptotic signaling and has been implicated in the aggressiveness of a number of different human cancers including acute myelogenous leukemia (AML). We have investigated the therapeutic potential of the novel Akt inhibitor, perifosine, on human AML cells. Perifosine is a synthetic alkylphospholipid, a new class of antitumor agents, which target plasma membrane and inhibit signal transduction networks. Perifosine was tested on THP-1 and MV 4-11 cell lines, as well as primary leukemia cells. Perifosine treatment induced cell death by apoptosis in AML cell lines. Perifosine caused Akt and ERK 1/2 dephosphorylation as well as caspase activation. In THP-1 cells, the proapoptotic effect of perifosine was partly dependent on the Fas/FasL system and c-jun-N-kinase activation. In MV 4–11 cells, perifosine downregulated phosphorylated Akt, but not phosphorylated FLT3. Moreover, perifosine reduced the clonogenic activity of AML, but not normal, CD34+ cells, and markedly increased blast cell sensitivity to etoposide. Our findings indicate that perifosine, either alone or in combination with existing drugs, might be a promising therapeutic agent for the treatment of those AML cases characterized by upregulation of the PI3K–Akt survival pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Okamoto T, Sanda T, Asamitsu K . NF-κ B signaling and carcinogenesis. Curr Pharm Design 2007; 13: 447–462.

    Article  CAS  Google Scholar 

  2. Pardee AB . Tumor progression—targets for differential therapy. J Cell Physiol 2006; 209: 589–591.

    Article  CAS  Google Scholar 

  3. Brennan P, Mehl AM, Jones M, Rowe M . Phosphatidylinositol 3-kinase is essential for the proliferation of lymphoblastoid cells. Oncogene 2002; 21: 1263–1271.

    Article  CAS  Google Scholar 

  4. West KA, Castillo SS, Dennis PA . Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat 2002; 5: 234–248.

    Article  CAS  Google Scholar 

  5. Vivanco I, Sawyers CL . The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489–501.

    Article  CAS  Google Scholar 

  6. Altomare DA, Testa JR . Perturbations of the AKT signaling pathway in human cancer. Oncogene 2005; 24: 7455–7464.

    Article  CAS  Google Scholar 

  7. Hanada M, Feng J, Hemmings BA . Structure, regulation and function of PKB/AKT—a major therapeutic target. Biochim Biophys Acta 2004; 1697: 3–16.

    Article  CAS  Google Scholar 

  8. Recher C, Dos Santos C, Demur C, Payrastre B . mTOR, a new therapeutic target in acute myeloid leukemia. Cell Cycle 2005; 4: 1540–1549.

    Article  CAS  Google Scholar 

  9. Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV . The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 2005; 24: 7482–7492.

    Article  CAS  Google Scholar 

  10. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB . Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 2005; 4: 988–1004.

    Article  CAS  Google Scholar 

  11. Levis M . Recent advances in the development of small-molecule inhibitors for the treatment of acute myeloid leukemia. Curr Opin Hematol 2005; 12: 55–61.

    Article  CAS  Google Scholar 

  12. Luo J, Manning BD, Cantley LC . Targeting the PI3K–Akt pathway in human cancer: rationale and promise. Cancer Cell 2003; 4: 257–262.

    Article  CAS  Google Scholar 

  13. Crul M, Rosing H, de Klerk GJ, Dubbelman R, Traiser M, Reichert S et al. Phase I and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. Eur J Cancer 2002; 38: 1615–1621.

    Article  CAS  Google Scholar 

  14. Van Ummersen L, Binger K, Volkman J, Marnocha R, Tutsch K, Kolesar J et al. A phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer. Clin Cancer Res 2004; 10: 7450–7456.

    Article  CAS  Google Scholar 

  15. Hideshima T, Catley L, Yasui H, Ishitsuka K, Raje N, Mitsiades C et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 2006; 107: 4053–4062.

    Article  CAS  Google Scholar 

  16. Ruiter GA, Zerp SF, Bartelink H, van Blitterswijk WJ, Verheij M . Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway. Anticancer Drugs 2003; 14: 167–173.

    Article  CAS  Google Scholar 

  17. Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK . Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2003; 2: 1093–1103.

    CAS  Google Scholar 

  18. Momota H, Nerio E, Holland EC . Perifosine inhibits multiple signaling pathways in glial progenitors and cooperates with temozolomide to arrest cell proliferation in gliomas in vivo. Cancer Res 2005; 65: 7429–7435.

    Article  CAS  Google Scholar 

  19. Granville CA, Memmott RM, Gills JJ, Dennis PA . Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clin Cancer Res 2006; 12: 679–689.

    Article  CAS  Google Scholar 

  20. Birkenkamp KU, Geugien M, Schepers H, Westra J, Lemmink HH, Vellenga E . Constitutive NF-κB DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. Leukemia 2004; 18: 103–112.

    Article  CAS  Google Scholar 

  21. Grandage VL, Gale RE, Linch DC, Khwaja A . PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-κB, Mapkinase and p53 pathways. Leukemia 2005; 19: 586–594.

    Article  CAS  Google Scholar 

  22. Matkovic K, Brugnoli F, Bertagnolo V, Banfic H, Visnjic D . The role of the nuclear Akt activation and Akt inhibitors in all-trans-retinoic acid-differentiated HL-60 cells. Leukemia 2006; 20: 941–951.

    Article  CAS  Google Scholar 

  23. Martelli AM, Nyakern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C et al. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 2006; 20: 911–928.

    Article  CAS  Google Scholar 

  24. Kornblau SM, Womble M, Qiu YH, Jackson CE, Chen W, Konopleva M et al. Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood 2006; 108: 2358–2365.

    Article  CAS  Google Scholar 

  25. Doepfner KT, Spertini O, Arcaro A . Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway. Leukemia 2007; 21: 1921–1930.

    Article  CAS  Google Scholar 

  26. Nyakern M, Tazzari PL, Finelli C, Bosi C, Follo MY, Grafone T et al. Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia 2006; 20: 230–238.

    Article  CAS  Google Scholar 

  27. Rahmani M, Reese E, Dai Y, Bauer C, Payne SG, Dent P et al. Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res 2005; 65: 2422–2432.

    Article  CAS  Google Scholar 

  28. Zeng Z, Sarbassov dos D, Samudio IJ, Yee KW, Munsell MF, Ellen Jackson C et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 2007; 109: 3509–3512.

    Article  CAS  Google Scholar 

  29. Tazzari PL, Cappellini A, Ricci F, Evangelisti C, Papa V, Grafone T et al. Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia 2007; 21: 427–438.

    Article  CAS  Google Scholar 

  30. Das H, Koizumi T, Sugimoto T, Chakraborty S, Ichimura T, Hasegawa K et al. Quantitation of Fas and Fas ligand gene expression in human ovarian, cervical and endometrial carcinomas using real-time quantitative RT-PCR. Br J Cancer 2000; 82: 1682–1688.

    Article  CAS  Google Scholar 

  31. Zamai L, Canonico B, Luchetti F, Ferri P, Melloni E, Guidotti L et al. Supravital exposure to propidium iodide identifies apoptosis on adherent cells. Cytometry 2001; 44: 57–64.

    Article  CAS  Google Scholar 

  32. Hail Jr N, Carter BZ, Konopleva M, Andreeff M . Apoptosis effector mechanisms: a requiem performed in different keys. Apoptosis 2006; 11: 889–904.

    Article  Google Scholar 

  33. Casamayor A, Morrice NA, Alessi DR . Phosphorylation of Ser-241 is essential for the activity of 3-phosphoinositide-dependent protein kinase-1: identification of five sites of phosphorylation in vivo. Biochem J 1999; 342: 287–292.

    Article  CAS  Google Scholar 

  34. Nyakern M, Cappellini A, Mantovani I, Martelli AM . Synergistic induction of apoptosis in human leukemia T cells by the Akt inhibitor perifosine and etoposide through activation of intrinsic and Fas-mediated extrinsic cell death pathways. Mol Cancer Ther 2006; 5: 1559–1570.

    Article  CAS  Google Scholar 

  35. King CC, Gardiner EM, Zenke FT, Bohl BP, Newton AC, Hemmings BA et al. p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J Biol Chem 2000; 275: 41201–41209.

    Article  CAS  Google Scholar 

  36. Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M et al. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 2004; 18: 267–275.

    Article  CAS  Google Scholar 

  37. She QB, Solit DB, Ye Q, O'Reilly KE, Lobo J, Rosen N . The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 2005; 8: 287–297.

    Article  CAS  Google Scholar 

  38. Lee SY, Cherla RP, Tesh VL . Simultaneous induction of apoptotic and survival signaling pathways in macrophage-like THP-1 cells by Shiga toxin 1. Infect Immun 2007; 75: 1291–1302.

    Article  CAS  Google Scholar 

  39. Kappelmayer J, Udvardy M, Antal-Szalmas P . Pgp and FLT3: identification and modulation of two proteins that lead to chemotherapy resistance in acute myeloid leukemia. Curr Med Chem 2007; 14: 519–530.

    Article  CAS  Google Scholar 

  40. Yee KW, O'Farrell AM, Smolich BD, Cherrington JM, McMahon G, Wait CL et al. SU5416 and SU5614 inhibit kinase activity of wild-type and mutant FLT3 receptor tyrosine kinase. Blood 2002; 100: 2941–2949.

    Article  CAS  Google Scholar 

  41. Vink SR, van Blitterswijk WJ, Schellens JH, Verheij M . Rationale and clinical application of alkylphospholipid analogues in combination with radiotherapy. Cancer Treat Rev 2007; 33: 191–202.

    Article  CAS  Google Scholar 

  42. Argiris A, Cohen E, Karrison T, Esparaz B, Mauer A, Ansari R et al. A phase II trial of perifosine, an oral alkylphospholipid, in recurrent or metastatic head and neck cancer. Cancer Biol Ther 2006; 5: 766–770.

    Article  CAS  Google Scholar 

  43. Leighl NB, Dent S, Clemons M, Vandenberg TA, Tozer R, Warr DG et al. A Phase 2 study of perifosine in advanced or metastatic breast cancer. Breast Cancer Res Treat 2007 (in press).

  44. Ricciardi MR, McQueen T, Chism D, Milella M, Estey E, Kaldjian E et al. Quantitative single cell determination of ERK phosphorylation and regulation in relapsed and refractory primary acute myeloid leukemia. Leukemia 2005; 19: 1543–1549.

    Article  CAS  Google Scholar 

  45. Lunghi P, Tabilio A, Dall'Aglio PP, Ridolo E, Carlo-Stella C, Pelicci PG et al. Downmodulation of ERK activity inhibits the proliferation and induces the apoptosis of primary acute myelogenous leukemia blasts. Leukemia 2003; 17: 1783–1793.

    Article  CAS  Google Scholar 

  46. Billottet C, Grandage VL, Gale RE, Quattropani A, Rommel C, Vanhaesebroeck B et al. A selective inhibitor of the p110δ isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene 2006; 25: 6648–6659.

    Article  CAS  Google Scholar 

  47. Li X, Luwor R, Lu Y, Liang K, Fan Z . Enhancement of antitumor activity of the anti-EGF receptor monoclonal antibody cetuximab/C225 by perifosine in PTEN-deficient cancer cells. Oncogene 2006; 25: 525–535.

    Article  CAS  Google Scholar 

  48. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 2007; 1773: 1263–1284.

    Article  CAS  Google Scholar 

  49. Advani AS . FLT3 and acute myelogenous leukemia: biology, clinical significance and therapeutic applications. Curr Pharm Des 2005; 11: 3449–3457.

    Article  CAS  Google Scholar 

  50. Gajate C, Mollinedo F . Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 2007; 109: 711–719.

    Article  CAS  Google Scholar 

  51. Ciechomska I, Pyrzynska B, Kazmierczak P, Kaminska B . Inhibition of Akt kinase signalling and activation of Forkhead are indispensable for upregulation of FasL expression in apoptosis of glioma cells. Oncogene 2003; 22: 7617–7627.

    Article  CAS  Google Scholar 

  52. Cappellini A, Tabellini G, Zweyer M, Bortul R, Tazzari PL, Billi AM et al. The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60 human leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27(Kip1) and control of cyclin D1 expression. Leukemia 2003; 17: 2157–2167.

    Article  CAS  Google Scholar 

  53. Gross A . BID as a double agent in cell life and death. Cell Cycle 2006; 5: 582–584.

    Article  CAS  Google Scholar 

  54. Droin N, Bichat F, Rebe C, Wotawa A, Sordet O, Hammann A et al. Involvement of caspase-2 long isoform in Fas-mediated cell death of human leukemic cells. Blood 2001; 97: 1835–1844.

    Article  CAS  Google Scholar 

  55. Wagner KW, Engels IH, Deveraux QL . Caspase-2 can function upstream of bid cleavage in the TRAIL apoptosis pathway. J Biol Chem 2004; 279: 35047–35052.

    Article  CAS  Google Scholar 

  56. Prasad V, Chandele A, Jagtap JC, Sudheer Kumar P, Shastry P . ROS-triggered caspase 2 activation and feedback amplification loop in beta-carotene-induced apoptosis. Free Radic Biol Med 2006; 41: 431–442.

    Article  CAS  Google Scholar 

  57. Barthelemy C, Henderson CE, Pettmann B . Foxo3a induces motoneuron death through the Fas pathway in cooperation with JNK. BMC Neurosci 2004; 5: 48.

    Article  Google Scholar 

  58. Faivre S, Djelloul S, Raymond E . New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin Oncol 2006; 33: 407–420.

    Article  CAS  Google Scholar 

  59. Kandel ES, Skeen J, Majewski N, Di Cristofano A, Pandolfi PP, Feliciano CS et al. Activation of Akt/protein kinase B overcomes a G2/M cell cycle checkpoint induced by DNA damage. Mol Cell Biol 2002; 22: 7831–7841.

    Article  CAS  Google Scholar 

  60. Shtivelman E, Sussman J, Stokoe D . A role for PI 3-kinase and PKB activity in the G2/M phase of the cell cycle. Curr Biol 2002; 12: 919–924.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from: Fondazione CARISBO, Associazione Italiana Ricerca sul Cancro (AIRC Regional grants), Italian MUR PRIN 2005 (to AMM and NT), Progetti Strategici Università di Bologna. JAM was supported by the USA Public Health Service (RO1098195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Martelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papa, V., Tazzari, P., Chiarini, F. et al. Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells. Leukemia 22, 147–160 (2008). https://doi.org/10.1038/sj.leu.2404980

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404980

Keywords

This article is cited by

Search

Quick links