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Macrophages and tumor angiogenesis
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Angiogenesis plays a crucial role in the cancerogenesis, growth
and progression of human solid and hematological tumors.1,2

The passage from the preangiogenic phenotype to the angio-
genic phenotype, referred to as the ‘angiogenic switch’, allows
the formation of a neovasculature that is indispensable for tumor
growth and metastatic dissemination.3

In 1889, the English surgeon Stephen Paget published his
‘seed and soil’ explanation of nonrandom pattern of metastasis,
and was the first to suggest that interactions between tumor cells
and host cells in the microenvironment are critical in regulating
tumorigenesis.4 Certain favored tumor cells (the ‘seed’), he said,
had a specific affinity for the growth-enhancing milieu within
specific organs (the ‘soil’), and hence metastasis only occurred
when the ‘seed’ and ‘soil’ were compatible.5 The importance of
several components of the ‘soil’ in regulating tumor growth has
since been emphasized: (1) the extracellular matrix; (2) stromal
cells and their growth factors and inhibitors; (3) microvessels
and angiogenic factors; and (4) inflammatory cells.

The tumor microenvironment is a complex system of many
cell type, including endothelial cells and their precursors,
pericytes, smooth-muscle cells, fibroblasts, neutrophils, eosino-
phils, basophils, mast cells, T, B and natural killer lymphocytes,
and antigen-presenting cells, such as macrophages and dendritic
cells, which communicate through a complex network of
intercellular signaling pathways that are mediated by surface
adhesion adhesion molecules, cytokines and their receptors.

Tumor angiogenesis result not only from the interaction of
cancer cells with endothelial cells, but surrounding inflamma-
tory cells have also a crucial role in directing the neoformation
of blood vessels.

Macrophages are derived from CD34-positive bone marrow
progenitors that continually proliferate and shed their progeny in
the bloodstream as promonocytes. They then develop into
monocyte and extravasate into tissues where they differentiate
into a specific type of ‘resident’ tissue macrophage.6 Metchnik-
off was the first person in 1893 to use the term ‘macrophage’ to
describe a large cell able to take up microorganisms.7 The
phenotype of these fully differentiated, resident macrophages
can vary markedly within tissues, from that of microglial cells in
the brain, Kupffer cells in the liver, alveolar macrophages in the
lung and Langerhans cells in the skin. Resident macrophages
share a set of common functions, including their ability to
intervene against microbial infections, to regulate normal cell
turnover and tissue remodeling, and to help repair sites of
injury.6

Almost any local disturbance of tissue normality, be it
infection, normal cell turnover or wounding, immune response
or malignancy, caused rapid recruitment of macrophages.
Recruited macrophages exhibit many phenotypic differences
from resident tissue macrophages. The generic term, ‘macro-
phages activation’ is commonly used to describe this process,
but the nature of an ‘activated macrophage’ population depends
upon both the nature of the recruiting stimulus and the location.

It is now well established that the functional domain of the
macrophage extends far beyond its originally recognized role as
a scavenger cell. Its rich array of secretory products, anatomic
diversity and functional heterogeneity is unmatched by any
other cell type. As a result of this remarkable versatility, the
macrophage is able to influence every facet of the immune
response and inflammation as well as playing a central role in
the etiology and/or pathogenesis of a number of disease
processes.

Monocyte differentiated into polarized macrophage subset
when exposed to different cytokine milieu.8 In the presence of
granulocyte-macrophage colony-stimulating factor (GM-CSF),
interferon gamma (IFN-g), lipopolysaccharide and other micro-
bial products, monocyte differentiate into M1 macrophage. In
the presence of macrophage colony-stimulating factor (M-CSF),
interleukin (IL)-4, IL-13, IL-10, immunosuppressive agents
(corticosteroids, vitamin D3, prostaglandins) monocytes differ-
entiate into M2 macrophages, involved in tumor angiogenesis.

Firstly in 1863, Rudolf Virchow noticed the infiltration of
leukocytes into malignant tissues and suggested that cancers
arise at regions of chronic inflammation.9 Leukocytes that do
reach the tumor often remain localized in the tumor periphery or
stroma and are often not able to exert strong antitumor
activity.10 Both mouse and human tumors produce tumor-
derived chemotactic factors capable of stimulating monocyte
migration.11

Tumor-associated macrophages (TAMs) derived from cir-
culating monocytes and are recruited at the tumor site by a
tumor-derived chemotactic factor from monocytes, originally
described by Bottazzi et al.,12 and later identified as the
chemokine CCL2/MCP-1.13,14 When exposed to vascular
endothelial growth factor (VEGF)15 or to brief ischemia,16

endothelial cells synthesize MCP-1 and the extent of MCP-1
expression in human cancers correlated with both TAM
infiltration and tumor malignancy in human melanoma, in
Kaposi sarcoma cell lines and in human tumor cell lines of
epithelial origin such as breast, colon and ovary.17 Moreover,
MCP-1 is angiogenic when implanted into the rabbit cornea,
where it exerted a potency similar to VEGF.18 MCP-1 expression
has been shown to correlate significantly with levels of VEGF,
tumor necrosis factor-a (TNF-a) and IL-8.19–21

The expression of CCL5/RANTES is elevated in breast tumor
cells synergistically by IFN-g and TNF-a, regulating monocyte
migration into tumor sites and stimulate them to secrete matrix
metalloproteinase (MMP)-9 and MMP-19.22,23

CSF and GM-CSF are commonly produced in a range of
different tumor types and are chemotactic for macrophages
in vitro.24 Transplanted mouse tumors transfected with the
GM-CSF gene exhibit increased TAM infiltration25 and genetic
deletion of CSF-1 in the PyMT mouse model of breast cancer
significantly decreased TAM infiltration and attenuated tumor
progression to metastasis.26 Increased expression of GM-CSF has
been found in human breast, endometrial and ovarian tumors27

and high GM-CSF expression is associated with high TAM
accumulation in breast carcinomas.28 Also VEGF is chemotactic
for monocytes via VEGFR-1.29,30
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TAM expresses and releases epidermal growth factor (EGF),
fibroblast growth factor-2 (FGF-2),31,32 transforming growth
factor-a and -b (TGF-a and -b),33–35 VEGF,36 TNF-a37 IL-1,38

IL-6, IL-8,39 platelet-activating factor40 platelet-derived growth
factor (PDGF)41 G-CSF and GM-CSF.42 thymidine phospho-
rylase43 and chemokines, such as CCL2.44 TAMs produce,
besides, angiogenic factors, angiostatic molecules such as
thrombospondin-1,45 IL-12,46 IL-1847 and MMP-12.48 TAMs
can produce angiogenesis regulators and may also induce tissue
remodeling by producing various proteinase activators and
inhibitors that may destroy the integrity of the basement
membrane and extracellular matrix, liberating matrix-bound
factors, including MMP-2, MMP-9, MMP-12 and cyclooxygen-
ase-2 (COX-2).49–51 TAM production of MMP-9 has been shown
to be crucial for angiogenesis in a human papillomavirus-16-
induced model of cervical carcinogenesis. In this model,
inhibition of MMP-9 in macrophages blocked the release of
VEGF and thereby inhibited angiogenesis and tumor growth.52

Inhibition of CSF-1 function in human tumors xenografted into
immunocompromised mice reduced their growth and this was
correlated with poor macrophage recruitment and reduced
angiogenesis due to a depletion of VEGF.

TAMs accumulate in hypoxic regions of tumors and hypoxia
triggers a proangiogenic program in these cells. TAM adaptation
to hypoxia, which is achieved by the increased expression of
hypoxia-inducible and proangiogenic genes, such as VEGF,
FGF-2 and CXCL8, as well as glycolytic enzymes, whose
transcriptions are controlled by the transcription factors hypoxia-
inducible factors 1 and 2 (HIF-1 and -2).53 Increased number of
TAMs in hypoxic regions may promote tumor progression in part
by stimulating levels of angiogenesis, such as occurring in breast
carcinoma.54

White et al.55 used adenoviral infection to overexpress HIF-2
in human macrophages and found it to be the primary inducer of
genes encoding angiogenic cytokines in these genes. Macro-
phages also upregulates VEGF and other proangiogenic factors in
response to hypoxia. TAMs express VEGF almost exclusively in
avascular and perinecrotic areas of human breast carcinoma.56

Macrophages also synthesize increased levels of MMP-7
when exposed to hypoxia in vitro and in an avascular area of
human tumors.57 MMP-7 is known to stimulate endothelial cell
proliferation and migration.58

A complementary DNA array study has identified upregula-
tion of messenger encoding 430 proangiogenic genes in
primary macrophages exposed to hypoxia, including CXCL8,
angiopoietin, COX-2 and other factors.55

Bingle et al.59 found that when macrophages are co-cultured
in vitro with human tumor spheroids, they infiltrate deep into the
central, hypoxic areas of these structures. The release of VEGF
by macrophage-infiltrated spheroids was significantly higher
than that seen for noninfiltrated spheroids. This increase
translated into a significant stimulation of angiogenesis in vivo
when implanted into microcirculation window chambers on the
flags of nude mice for 3 days.59

Evans60,61 has shown that mice depleted of macrophages by
whole-body X-irradiation or azathioprine administered before or
after implantation of a syngeneic fibrosarcoma showed a delay
in the appearance of tumors, and a marked reduction in tumor
vascularization. Mostafa et al.62,63 and Stenzinger et al.64

showed that vascularization of several human tumor cell lines
grown on the chorioallantoic membrane of the chick embryo or
subcutaneously in nude mice occurred coincidentally with
mononuclear cell infiltration at the tumor site.

Polverini and Leibovich65 isolated macrophages from a
transplantable rat fibrosarcoma and examined them and their

serum-free conditioned media for angiogenic activity in rat
corneas. Results showed that TAM and their conditioned media
were potently angiogenic in vivo and stimulated proliferation of
bovine aortic endothelial cells in culture. Moreover, when
TAMs were combined with tumor cells at a concentration
equivalent to the number of macrophages originally present in
the tumor, there was a marked enhancement of tumor
neovascularization and growth. Polverini and Leibovich66

reported that hamsters bearing chemical carcinogen-induced
squamous-cell carcinomas showed a marked reduction in the
thymidine incorporation by endothelial cells and neovascular-
ization of tumors when treated with low doses of steroids and
anti-macrophage serum.

In the mouse model of breast cancer caused by the mammary
epithelial cell restricted expression of the Polyoma middle
T oncoprotein (PyMT mice) infiltration of TAM in primary
tumors is positively associated with tumor progression to
malignancy.26 Depletion of macrophages in this model severely
delayed tumor progression and reduced metastasis, whereas an
increase in macrophage infiltration remarkably accelerated
these processes. By using the PyMT-induced mouse mammary
tumors, Lin et al.67 have characterized the development of the
vasculature in mammary tumors during their progression to
malignancy. They have shown that both angiogenic switch and
the progression to malignancy are regulated by infiltrated
macrophages in the primary mammary tumors. Moreover,
inhibition of the macrophage infiltration into the tumor delayed
the angiogenic switch and malignant transition, whereas genetic
reduction of the macrophage population specifically in these
tumors rescued the vessel phenotype. Finally, premature
induction of macrophage infiltration into premalignant lesions
promoted an early onset of the angiogenic switch independent
of tumor progression.67

De Palma et al.68 have shown that a subset of monocytes that
express the angiopoietin receptor Tie-2 are inducers of
angiogenesis in both spontaneous and orthotopic tumor models.
Knockout of these Tie-2-expressing cells in vivo markedly
reduced angiogenesis in human glioma xenografts and
prompted tumor regression.

A relationship between the macrophage content of tumors,
the rate of tumor growth and the extent of their vascularization
has been shown in several tumors, including breast carcinoma
where TAM presence focally in large numbers correlates with a
high level of angiogenesis and with poor prognosis, decreased
relapse-free and overall survival of the patients,69,70 malignant
uveal melanoma,71 glioma,72 squamous-cell carcinoma of the
esophagus,73 bladder carcinoma74 and prostate carcinoma.75 In
lung cancer, TAM may favor tumor progression by contributing
to stroma formation and angiogenesis through their release of
PDGF in conjunction with TGF-b-1 production by cancer
cells.76

Monocytes/macrophages display a high degree of plasticity,
as shown by their ability to transdifferentiate into endothelial
cells in vitro and in vivo.77–85 CD14þ mononuclear cells have
been used as the starting population for cultivation of
endothelial progenitor cells (EPCs).77 Cultivated EPC grown
from different starting populations, including peripheral blood
mononuclear cells, have been shown to express endothelial
markers such as von Willebrand factor, VEGFR-2, VE-cadherin,
CD156 and CD31.86 Monocytes coexpress endothelial lineage
markers such as VEGFR-2 and AC133 and have the capacity to
differentiate into adherent endothelial cells and to form cord-
like structures in Matrigel.80,87

Kamihata et al.88 and Shintani et al.89 have shown that bone
marrow mononuclear cells not only contain EPC but also
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angiogenic factors and cytokines and that implantation of bone
marrow mononuclear cells into ischemic tissues augments
collateral vessel formation.

Elsheikh et al.81 have shown that peripheral blood monocytes
CD14þ and VEGFR-2þ exhibited the potential to differentiate
in vitro into cells with endothelial characteristics. Moreover,
these cells transduced by a lentiviral vector driving expression of
green fluorescent protein (GFP) and transplantation of these cells
into ballon-injured femoral arteries of nude mice significantly
contributed to efficient re-endothelialization. Rehman et al.78

reported that peripheral-blood endothelial-like cells are derived
from monocytes/macrophages and secrete angiogenic factors.

Maniotis et al.90 described a new model of formation of
vascular channels by human melanoma cells and called it
‘vasculogenic mimicry’ to emphasize the de novo generation of
blood vessels without the participation of endothelial cells and
independent of angiogenesis. The word ‘vasculogenic’ was
selected to indicate the generation of the pathway de novo and
‘mimicry’ was used because tumor cell pathways for transport-
ing fluid in tissues were clearly not blood vessels.

Recently, we have demonstrated that multiple myeloma bone
marrow TAM exposed to VEGF and FGF-2 develop a number of
phenotypic properties similar to those of paired bone marrow
endothelial cells, and form capillary-like structures overlapping
morphologically those produced by endothelial cells.91 At
ultrastructural level, multiple myeloma TAMs exhibit numerous
cytoplasmic extroversions arranged in tube-like structures and
these data suggest that TAMs contribute to build neovessels in
multiple myeloma through a vasculogenic mimicry.

TAMs can influence angiogenesis by releasing angiogenic
cytokines directly, or indirectly by secreting extracellular
matrix-degrading enzymes that release angiogenic factors that
have been sequestered by the matrix. TAMs are found in
abundance in many tumor types and once the monocytes have
entered the tumor environment they are activated by factors
peculiar to the tumor microenvironment and migrate toward the
areas of hypoxia perhaps following an oxygen gradient or
chemokines released by surrounding tumor cells or other
inflammatory cells. TAMs then release factors that initiate
angiogenesis into the area and their production of extracellular
matrix-degrading enzymes facilitates the growth of endothelial
cells and loosens the fibrous network of the extracellular matrix
thus allowing potentially metastatic tumor cells increased
mobility.

With the seemingly central role that TAM could play in tumor
angiogenesis, the macrophage itself becomes an appealing
target for future antiangiogenic therapeutic strategies through
two approaches: (1) compounds that suppress secretion of
angiogenic substances by macrophages; and (2) compound that
inhibit macrophage infiltration into the tumor mass.
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