Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Disorders

T cells from patients with polycythemia vera elaborate growth factors which contribute to endogenous erythroid and megakaryocyte colony formation

Abstract

In the present study, we report that media conditioned by polycythemia vera (PV) CD3+ cells promote BFU-E and CFU-Mk colony formation by both cord blood and PV peripheral blood CD34+ cells in the absence of exogenous cytokines and promoting megakaryocyte proplatelet formation. CD3+ cells constitutively produce elevated levels of IL-11, while stimulation with the addition of phytohemagglutinin (PHA) increased GM-CSF levels in most of the patients with PV. Anti-IL-11-neutralizing antibody partially inhibited the formation of BFU-E and CFU-Mk colonies promoted by PV CD3+ cell-conditioned media. Although IL-11 is not produced by normal T cells, real-time PCR and flow cytometric analysis showed that IL-11 was upregulated in the CD3+ cells of most PV patients as compared to normal CD3+ cells. In addition, a greater percentage of BFU-E colonies formed by PV CD34+ cells in the presence of PV CD3+ cell-conditioned media alone were JAK2V617F-positive as compared with that induced by EPO. We conclude that dysregulated production of soluble growth factor(s), including IL-11 and GM-CSF by PV T cells, contributes to the in vitro formation of erythroid colonies in the absence of exogenous cytokines by PV CD34+ cells and likely plays a role in sustaining hematopoiesis in PV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hoffman R, Baker KR, Prchal JT . The polycythemias. In: Hoffman R, Benz Jr E, Shattil S, Furie B, Cohen HJ, Silberstein L, McGlave P (eds). Hematology: Basic Principles and Practice, 4th edn. Churchill Livingstone: New York, 2004, pp 1209–1245.

    Google Scholar 

  2. Kralovics R, Skoda RC . Molecular pathogenesis of Philadelphia chromosome negative myeloproliferative disorders. Blood Rev 2005; 19: 1–13.

    Article  CAS  PubMed  Google Scholar 

  3. Mesa RA . Clinical and scientific advances in the Philadelphia-chromosome negative chronic myeloproliferative disorders. Int J Hematol 2002; 76: 193–203.

    Article  PubMed  Google Scholar 

  4. Spivak JL . Polycythemia vera: myths, mechanisms, and management. Blood 2002; 100: 4272–4290.

    Article  CAS  PubMed  Google Scholar 

  5. Prchal JF, Prchal JT . Molecular basis for polycythemia. Curr Opin Hematol 1999; 6: 100–109.

    Article  CAS  PubMed  Google Scholar 

  6. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  7. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  PubMed  Google Scholar 

  8. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK 2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  PubMed  Google Scholar 

  9. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005; 280: 22788–22792.

    Article  CAS  PubMed  Google Scholar 

  11. Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG . Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 2006; 107: 4274–4281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL . JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 2006; 108: 1652–1660.

    Article  CAS  PubMed  Google Scholar 

  13. Ishii T, Bruno E, Hoffman R, Xu M . Involvement of various hematopoietic cell lineages by the JAK2V617F mutation in polycythemia vera. Blood 2006; 108: 3128–3134.

    Article  CAS  PubMed  Google Scholar 

  14. Cario H, Goerttler PS, Steimle C, Levine RL, Pahl HL . The JAK2V617F mutation is acquired secondary to the predisposing alteration in familial polycythaemia vera. Br J Haematol 2005; 130: 800–801.

    Article  CAS  PubMed  Google Scholar 

  15. Kralovics R, Teo SS, Li S, Theocharides A, Buser AS, Tichelli A et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 2006; 108: 1377–1380.

    Article  CAS  PubMed  Google Scholar 

  16. Nussenzveig RH, Swierczek SI, Jelinek J, Gaikwad A, Liu E, Verstovsek S et al. Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol 2007; 35: 32–38.

    Article  CAS  PubMed  Google Scholar 

  17. Spivak JL . The chronic myeloproliferative disorders: clonality and clinical heterogeneity. Semin Hematol 2004; 41: 1–5.

    Article  CAS  PubMed  Google Scholar 

  18. Fialkow PJ, Gartler SM, Yoshida A . Clonal origin of chronic myelocytic leukemia in man. Proc Natl Acad Sci USA 1967; 58: 1468–1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adamson JW, Fialkow PJ, Murphy S, Prchal JF, Steinmann L . Polycythemia vera: stem-cell and probable clonal origin of the disease. N Engl J Med 1976; 295: 913–916.

    Article  CAS  PubMed  Google Scholar 

  20. Jacobson RJ, Salo A, Fialkow PJ . Agnogenic myeloid metaplasia: a clonal proliferation of hematopoietic stem cells with secondary myelofibrosis. Blood 1978; 51: 189–194.

    CAS  PubMed  Google Scholar 

  21. Fialkow PJ, Faguet GB, Jacobson RJ, Vaidya K, Murphy S . Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood 1981; 58: 916–919.

    CAS  PubMed  Google Scholar 

  22. Raskind WH, Jacobson R, Murphy S, Adamson JW, Fialkow PJ . Evidence for the involvement of B lymphoid cells in polycythemia vera and essential thrombocythemia. J Clin Invest 1985; 75: 1388–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsukamoto N, Morita K, Maehara T, Okamoto K, Sakai H, Karasawa M et al. Clonality in chronic myeloproliferative disorders defined by X-chromosome linked probes: demonstration of heterogeneity in lineage involvement. Br J Haematol 1994; 86: 253–258.

    Article  CAS  PubMed  Google Scholar 

  24. Williams CK, Ogunmola GB, Abugo O, Ukaejiofo EO, Esan GJ . Polycythaemia rubra vera associated with unbalanced expression of the X chromosome and monoclonality of T lymphocytes. Acta Haematol 1983; 70: 229–235.

    Article  CAS  PubMed  Google Scholar 

  25. Janssen JW, Anger BR, Drexler HG, Bartram CR, Heimpel H . Essential thrombocythemia in two sisters originating from different stem cell levels. Blood 1990; 75: 1633–1636.

    CAS  PubMed  Google Scholar 

  26. Kralovics R, Guan Y, Prchal JT . Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp Hematol 2002; 30: 229–236.

    Article  CAS  PubMed  Google Scholar 

  27. Shabbad E, Cassel A, Froom P, Aghai E . Effect of adherent cells on the regulation of BFU-E in patients with myeloproliferative disease. Am J Hematol 1990; 33: 225–229.

    Article  CAS  PubMed  Google Scholar 

  28. Nissen C, Hasler E, Moor K, Moser Y, Speck B . Polycythemia vera: spontaneous growth of hemoglobinized colonies is mediated by adherent cells. Exp Hematol 1986; 14: 549–554.

    Google Scholar 

  29. Hermouet S, Godard A, Pineau D, Corre I, Raher S, Lippert E et al. Abnormal production of interleukin (IL)-11 and IL-8 in polycythaemia vera. Cytokine 2002; 20: 178–183.

    Article  CAS  PubMed  Google Scholar 

  30. Geissler K, Ohler L, Fodinger M, Kabrna E, Kollars M, Skoupy S et al. Interleukin-10 inhibits erythropoietin-independent growth of erythroid bursts in patients with polycythemia vera. Blood 1998; 92: 1967–1972.

    CAS  PubMed  Google Scholar 

  31. Ugo V, Marzac C, Teyssandier I, Larbret F, Lecluse Y, Debili N et al. Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp Hematol 2004; 32: 179–187.

    Article  CAS  PubMed  Google Scholar 

  32. Cassel A, Braester A, Quitt M, Froom P, Aghai E . Soluble factors from peripheral blood T-cells of patients with polycythemia vera stimulate normal BFU-E. Leukemia 1993; 7: 1370–1373.

    CAS  PubMed  Google Scholar 

  33. Leng SX, Elias JA . Interleukin-11. Int J Biochem Cell Biol 1997; 29: 1059–1062.

    Article  CAS  PubMed  Google Scholar 

  34. Xu MJ, Tsuji K, Ueda T, Mukouyama YS, Hara T, Yang FC et al. Stimulation of mouse and human primitive hematopoiesis by murine embryonic aorta–gonad–mesonephros-derived stromal cell lines. Blood 1998; 92: 2032–2340.

    CAS  PubMed  Google Scholar 

  35. Li Z, Xu M, Xing S, Ho W, Ishii T, Li Q et al. Erlotinib effectively inhibits JAK2V617F activity and polycythemia vera cell growth. J Biol Chem 2007; 282: 3428–3432.

    Article  CAS  PubMed  Google Scholar 

  36. Stordeur P, Poulin LF, Craciun L, Zhou L, Schandené L, de Lavareille A et al. Cytokine mRNA quantification by real-time PCR. J Immunol Methods 2002; 259: 55–64.

    Article  CAS  PubMed  Google Scholar 

  37. Araki H, Yoshinaga K, Boccuni P, Zhao Y, Hoffman R, Mahmud N . Chromatin modifying agents permit human hematopoietic stem cells to undergo multiple cell divisions while retaining their repopulating potential. Blood 2007; 109: 3570–3578.

    Article  CAS  PubMed  Google Scholar 

  38. De Boer ML, Mordvinov VA, Thomas MA, Sanderson CJ . Role of nuclear factor of activated T cells (NFAT) in the expression of interleukin-5 and other cytokines involved in the regulation of hematopoetic cells. Int J Biochem Cell Biol 1999; 31: 1221–1236.

    Article  CAS  PubMed  Google Scholar 

  39. Michiels JJ, Barbui T, Finazzi G, Fuchtman SM, Kutti J, Rain JD et al. Diagnosis and treatment of polycythemia vera and possible future study designs of the PVSG. Leuk Lymphoma 2000; 36: 239–253.

    Article  CAS  PubMed  Google Scholar 

  40. Butcher C, D’Andrea RJ . Molecular aspects of polycythemia vera. Int J Mol Med 2000; 6: 243–252.

    CAS  PubMed  Google Scholar 

  41. Goerttler PS, Steimle C, Marz E, Johansson PL, Andreasson B, Griesshammer M et al. The Jak2V617F mutation, PRV-1 overexpression and EEC formation define a similar cohort of MPD patients. Blood 2005; 106: 2862–2864.

    Article  CAS  PubMed  Google Scholar 

  42. Corre-Buscail I, Pineau D, Boissinot M, Hermouet S . Erythropoietin-independent erythroid colony formation by bone marrow progenitors exposed to interleukin-11 and interleukin-8. Exp Hematol 2005; 33: 1299–1308.

    Article  CAS  PubMed  Google Scholar 

  43. Fisher MJ, Prchal JF, Prchal JT, D’Andrea AD . Anti-erythropoietin (EPO) receptor monoclonal antibodies distinguish EPO-dependent and EPO-independent erythroid progenitors in polycythemia vera. Blood 1994; 84: 1982–1991.

    CAS  PubMed  Google Scholar 

  44. Sui X, Tsuji K, Tajima S, Tanaka R, Muraoka K, Ebihara Y et al. Erythropoietin-independent erythrocyte production: signals through gp130 and c-kit dramatically promote erythropoiesis from human CD34+ cells. J Exp Med 1996; 183: 837–845.

    Article  CAS  PubMed  Google Scholar 

  45. Xu MJ, Matsuoka S, Yang FC, Ebihara Y, Manabe A, Tanaka R et al. Evidence for the presence of murine primitive megakaryocytopoiesis in the early yolk sac. Blood 2001; 97: 2016–2022.

    Article  CAS  Google Scholar 

  46. Choi ES, Hokom MM, Chen JL, Skrine J, Faust J, Nichol J et al. The role of megakaryocyte growth and development factor in terminal stages of thrombopoiesis. Br J Haematol 1996; 95: 227–233.

    Article  CAS  PubMed  Google Scholar 

  47. Ito T, Ishida Y, Kashiwagi R, Kuriya S . Recombinant human c-Mpl ligand is not a direct stimulator of proplatelet formation in mature human megakaryocytes. Br J Haematol 1996; 94: 387–390.

    Article  CAS  PubMed  Google Scholar 

  48. Nagahisa H, Nagata Y, Ohnuki T, Osada M, Nagasawa T, Abe T et al. Bone marrow stromal cells produce thrombopoietin and stimulate megakaryocyte growth and maturation but suppress proplatelet formation. Blood 1996; 87: 1309–1316.

    CAS  PubMed  Google Scholar 

  49. Norol F, Vitrat N, Cramer E, Guichard J, Burstein SA, Vainchenker W et al. Effects of cytokines on platelet production from blood and marrow CD34+ cells. Blood 1998; 91: 830–843.

    CAS  PubMed  Google Scholar 

  50. Williams JL, Pipia GG, Datta NS, Long MW . Thrombopoietin requires additional megakaryocyte-active cytokines for optimal ex vivo expansion of megakaryocyte precursor cells. Blood 1998; 91: 4118–4126.

    CAS  PubMed  Google Scholar 

  51. Taki H, Sakai T, Sugiyama E, Mino T, Kuroda A, Taki K et al. Monokine stimulation of interleukin-11 production by human vascular smooth muscle cells in vitro. Atherosclerosis 1999; 144: 375–380.

    Article  CAS  PubMed  Google Scholar 

  52. Ancey C, Corbi P, Froger J, Delwail A, Wijdenes J, Gascan H et al. Secretion of IL-6, IL-11 and LIF by human cardiomyocytes in primary culture. Cytokine 2002; 18: 199–205.

    Article  CAS  PubMed  Google Scholar 

  53. Sayama K, Diehn M, Matsuda K, Lunderius C, Tsai M, Tam SY et al. Transcriptional response of human mast cells stimulated via the Fc(epsilon)RI and identification of mast cells as a source of IL-11. BMC Immunol 2002; 3: 5.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Quesniaux VF, Clark SC, Turner K, Fagg B . Interleukin-11 stimulates multiple phases of erythropoiesis in vitro. Blood 1992; 80: 1218–1223.

    CAS  PubMed  Google Scholar 

  55. Schwertschlag US, Trepicchio WL, Dykstra KH, Keith JC, Turner KJ, Dorner AJ . Hematopoietic, immunomodulatory and epithelial effects of interleukin-11. Leukemia 1999; 13: 1307–1315.

    Article  CAS  PubMed  Google Scholar 

  56. Kiladjian JJ, Cassinat B, Turlure P, Cambier N, Roussel M, Bellucci S et al. High molecular response rate of polycythemia vera patients treated with pegylated interferon alpha-2a. Blood 2006; 108: 2037–2040.

    Article  CAS  PubMed  Google Scholar 

  57. Brassard DL, Grace MJ, Bordens RW . Interferon-alpha as an immunotherapeutic protein. J Leukoc Biol 2002; 71: 565–581. Review.

    CAS  PubMed  Google Scholar 

  58. Peschel C, Aulitzky WE, Huber C . Influence of interferon-alpha on cytokine expression by the bone marrow microenvironment—impact on treatment of myeloproliferative disorders. Leuk Lymphoma 1996; 22: 129–134. Review.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Department of Defense (MP048007 to MX) the Myeloproliferative Disorders Foundation (to MX and RH) and National Cancer Institute (1P01CA108671 to RH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Xu.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, T., Zhao, Y., Shi, J. et al. T cells from patients with polycythemia vera elaborate growth factors which contribute to endogenous erythroid and megakaryocyte colony formation. Leukemia 21, 2433–2441 (2007). https://doi.org/10.1038/sj.leu.2404899

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404899

Keywords

This article is cited by

Search

Quick links