Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional Control And Signal Transduction

The multi-functional cellular adhesion molecule CD44 is regulated by the 8;21 chromosomal translocation

Abstract

The 8;21 translocation is a common chromosomal abnormality in acute myeloid leukemia (AML). We recently identified a naturally occurring leukemogenic splice variant, AML1-ETO9a (acute myeloid leukemia-1 transcription factor and the eight-twenty-one corepressor-9a), of t(8;21). To understand the leukemic potential of AML1-ETO9a, we performed microarray analysis with the murine multipotential hematopoietic FDCP-mix A4 cell line. We identified changes in expression of various genes including CD44. CD44 is a type I transmembrane protein and functions as the major cellular adhesion molecule for hyaluronic acid, a component of the extracellular matrix. CD44 is expressed in most human cell types and is implicated in myeloid leukemia pathogenesis. We show that the presence of AML1-ETO9a significantly increased the expression of CD44 at both RNA and protein levels. Furthermore, the CD44 promoter is bound by AML1-ETO9a and AML1-ETO at the chromatin level. In addition, in the AML1-ETO9a leukemia mouse model CD44 is regulated in a cell context-dependent manner. Thus, our observations suggest that AML1-ETO and its splice variant AML1-ETO9a are able to regulate the expression of the CD44 gene, linking the 8;21 translocation to the regulation of a cell adhesion molecule that is involved in the growth and maintenance of the AML blast/stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Licht JD . AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene 2001; 20: 5660–5679.

    Article  CAS  Google Scholar 

  2. Peterson LF, Zhang DE . The 8;21 translocation in leukemogenesis. Oncogene 2004; 23: 4255–4262.

    Article  CAS  Google Scholar 

  3. Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001; 98: 10398–10403.

    Article  CAS  Google Scholar 

  4. Higuchi M, O’Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1: 63–74.

    Article  CAS  Google Scholar 

  5. Schwieger M, Lohler J, Friel J, Scheller M, Horak I, Stocking C . AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 2002; 196: 1227–1240.

    Article  CAS  Google Scholar 

  6. Grisolano JL, O’Neal J, Cain J, Tomasson MH . An activated receptor tyrosine kinase, TEL/PDGFbetaR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA 2003; 100: 9506–9511.

    Article  CAS  Google Scholar 

  7. Nishida S, Hosen N, Shirakata T, Kanato K, Yanagihara M, Nakatsuka SI et al. AML1-ETO rapidly induces acute myeloblastic leukemia in cooperation with Wilms’ tumor gene, WT1. Blood 2005; 107: 3303–3312.

    Article  Google Scholar 

  8. Yan M, Burel SA, Peterson LF, Kanbe E, Iwasaki H, Boyapati A et al. Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development. Proc Natl Acad Sci USA 2004; 101: 17186–17191.

    Article  CAS  Google Scholar 

  9. Yan M, Kanbe E, Peterson LF, Boyapati A, Miao Y, Wang Y et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med 2006; 12: 945–949.

    Article  CAS  Google Scholar 

  10. Spooncer E, Heyworth CM, Dunn A, Dexter TM . Self-renewal and differentiation of interleukin-3-dependent multipotent stem cells are modulated by stromal cells and serum factors. Differentiation 1986; 31: 111–118.

    Article  CAS  Google Scholar 

  11. Ghaffari S, Smadja-Joffe F, Oostendorp R, Levesque JP, Dougherty G, Eaves A et al. CD44 isoforms in normal and leukemic hematopoiesis. Exp Hematol 1999; 27: 978–993.

    Article  CAS  Google Scholar 

  12. Goodison S, Urquidi V, Tarin D . CD44 cell adhesion molecules. Mol Pathol 1999; 52: 189–196.

    Article  CAS  Google Scholar 

  13. Lewinsohn DM, Nagler A, Ginzton N, Greenberg P, Butcher EC . Hematopoietic progenitor cell expression of the H-CAM (CD44) homing-associated adhesion molecule1. Blood 1990; 75: 589–595.

    CAS  Google Scholar 

  14. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE . Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12: 1167–1174.

    Article  Google Scholar 

  15. Krause DS, Lazarides K, von Andrian UH, van Etten RA . Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 2006; 12: 1175–1180.

    Article  CAS  Google Scholar 

  16. Liu S, Klisovic RB, Vukosavljevic T, Yu J, Paschka P, Huynh L et al. Targeting AML1/ETO-HDAC repressor complex: a novel mechanism for valproic acid mediated gene expression and cellular differentiation in AML1/ETO-positive acute myeloid leukemia cells. J Pharmacol Exp Ther 2007; 321: 953–960.

    Article  CAS  Google Scholar 

  17. Weber GF, Ashkar S, Glimcher MJ, Cantor H . Receptor–ligand interaction between CD44 and osteopontin (Eta-1). Science 1996; 271: 509–512.

    Article  CAS  Google Scholar 

  18. Inman CK, Shore P . The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biol Chem 2003; 278: 48684–48689.

    Article  CAS  Google Scholar 

  19. Karasuyama H, Melchers F . Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. Eur J Immunol 1988; 18: 97–104.

    Article  CAS  Google Scholar 

  20. Peterson LF, Boyapati A, Ranganathan V, Iwama A, Tenen DG, Tsai S et al. The hematopoietic transcription factor AML1 (RUNX1) is negatively regulated by the cell cycle protein cyclin D3. Mol Cell Biol 2005; 25: 10205–10219.

    Article  CAS  Google Scholar 

  21. Li Z, Van CS, Qu C, Cavenee WK, Zhang MQ, Ren B . A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc Natl Acad Sci USA 2003; 100: 8164–8169.

    Article  CAS  Google Scholar 

  22. Oda M, Kurasawa Y, Todokoro K, Nagata Y . Thrombopoietin-induced CXC chemokines, NAP-2 and PF4, suppress polyploidization and proplatelet formation during megakaryocyte maturation. Genes Cells 2003; 8: 9–15.

    Article  CAS  Google Scholar 

  23. Han ZC, Lu M, Li J, Defard M, Boval B, Schlegel N et al. Platelet factor 4 and other CXC chemokines support the survival of normal hematopoietic cells and reduce the chemosensitivity of cells to cytotoxic agents. Blood 1997; 89: 2328–2335.

    CAS  Google Scholar 

  24. Touhami M, Fauvel-Lafeve F, Da SN, Chomienne C, Legrand C . Induction of thrombospondin-1 by all-trans retinoic acid modulates growth and differentiation of HL-60 myeloid leukemia cells. Leukemia 1997; 11: 2137–2142.

    Article  CAS  Google Scholar 

  25. Yang M, Li K, Ng MH, Yuen PM, Fok TF, Li CK et al. Thrombospondin-1 inhibits in vitro megakaryocytopoiesis via CD36. Thromb Res 2003; 109: 47–54.

    Article  CAS  Google Scholar 

  26. Weimar IS, Voermans C, Bourhis JH, Miranda N, van den Berk PC, Nakamura T et al. Hepatocyte growth factor/scatter factor (HGF/SF) affects proliferation and migration of myeloid leukemic cells. Leukemia 1998; 12: 1195–1203.

    Article  CAS  Google Scholar 

  27. Miyata Y, Kanetake H, Kanda S . Presence of phosphorylated hepatocyte growth factor receptor/c-Met is associated with tumor progression and survival in patients with conventional renal cell carcinoma. Clin Cancer Res 2006; 12: 4876–4881.

    Article  CAS  Google Scholar 

  28. Hug BA, Ahmed N, Robbins JA, Lazar MA . A chromatin immunoprecipitation screen reveals protein kinase Cbeta as a direct RUNX1 target gene. J Biol Chem 2004; 279: 825–830.

    Article  CAS  Google Scholar 

  29. Klampfer L, Zhang J, Zelenetz AO, Uchida H, Nimer SD . The AML1/ETO fusion protein activates transcription of BCL-2. Proc Natl Acad Sci USA 1996; 93: 14059–14064.

    Article  CAS  Google Scholar 

  30. Britos-Bray M, Friedman AD . Core binding factor cannot synergistically activate the myeloperoxidase proximal enhancer in immature myeloid cells without c-Myb. Mol Cell Biol 1997; 17: 5127–5135.

    Article  CAS  Google Scholar 

  31. Shimada H, Ichikawa H, Ohki M . Potential involvement of the AML1-MTG8 fusion protein in the granulocytic maturation characteristic of the t(8;21) acute myelogenous leukemia revealed by microarray analysis. Leukemia 2002; 16: 874–885.

    Article  CAS  Google Scholar 

  32. Francki A, Motamed K, McClure TD, Kaya M, Murri C, Blake DJ et al. SPARC regulates cell cycle progression in mesangial cells via its inhibition of IGF-dependent signaling. J Cell Biochem 2003; 88: 802–811.

    Article  CAS  Google Scholar 

  33. Chlenski A, Liu S, Guerrero LJ, Yang Q, Tian Y, Salwen HR et al. SPARC expression is associated with impaired tumor growth, inhibited angiogenesis and changes in the extracellular matrix. Int J Cancer 2006; 118: 310–316.

    Article  CAS  Google Scholar 

  34. DiMartino JF, Lacayo NJ, Varadi M, Li L, Saraiya C, Ravindranath Y et al. Low or absent SPARC expression in acute myeloid leukemia with MLL rearrangements is associated with sensitivity to growth inhibition by exogenous SPARC protein. Leukemia 2006; 20: 426–432.

    Article  CAS  Google Scholar 

  35. Lee S, Chen J, Zhou G, Shi RZ, Bouffard GG, Kocherginsky M et al. Gene expression profiles in acute myeloid leukemia with common translocations using SAGE. Proc Natl Acad Sci USA 2006; 103: 1030–1035.

    Article  CAS  Google Scholar 

  36. Dunne J, Cullmann C, Ritter M, Soria NM, Drescher B, Debernardi S et al. siRNA-mediated AML1//MTG8 depletion affects differentiation and proliferation-associated gene expression in t(8;21)-positive cell lines and primary AML blasts. Oncogene 2006; 25: 6067–6078.

    Article  CAS  Google Scholar 

  37. Harada N, Mizoi T, Kinouchi M, Hoshi K, Ishii S, Shiiba K et al. Introduction of antisense CD44S CDNA down-regulates expression of overall CD44 isoforms and inhibits tumor growth and metastasis in highly metastatic colon carcinoma cells. Int J Cancer 2001; 91: 67–75.

    Article  CAS  Google Scholar 

  38. Charrad RS, Gadhoum Z, Qi J, Glachant A, Allouche M, Jasmin C et al. Effects of anti-CD44 monoclonal antibodies on differentiation and apoptosis of human myeloid leukemia cell lines. Blood 2002; 99: 290–299.

    Article  CAS  Google Scholar 

  39. Marroquin CE, Downey L, Guo H, Kuo PC . Osteopontin increases CD44 expression and cell adhesion in RAW 264.7 murine leukemia cells. Immunol Lett 2004; 95: 109–112.

    Article  CAS  Google Scholar 

  40. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999; 23: 166–175.

    Article  CAS  Google Scholar 

  41. Michaud J, Wu F, Osato M, Cottles GM, Yanagida M, Asou N et al. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood 2002; 99: 1364–1372.

    Article  CAS  Google Scholar 

  42. Li Z, Yan J, Matheny CJ, Corpora T, Bravo J, Warren AJ et al. Energetic contribution of residues in the Runx1 Runt domain to DNA binding. J Biol Chem 2003; 278: 33088–33096.

    Article  CAS  Google Scholar 

  43. Choi SJ, Moon JH, Ahn YW, Ahn JH, Kim DU, Han TH . Tsc-22 enhances TGF-beta signaling by associating with Smad4 and induces erythroid cell differentiation. Mol Cell Biochem 2005; 271: 23–28.

    Article  CAS  Google Scholar 

  44. Kanemitsu N, Kato MV, Bai F, Miki T, Inoue T, Sakai T . Correlation between induction of the mac25 gene and anti-proliferative effects of 1alpha, 25(OH)2-D3 on breast cancer and leukemic cells. Int J Mol Med 2001; 7: 515–520.

    CAS  Google Scholar 

  45. Komatsu S, Okazaki Y, Tateno M, Kawai J, Konno H, Kusakabe M et al. Methylation and downregulated expression of mac25/insulin-like growth factor binding protein-7 is associated with liver tumorigenesis in SV40T/t antigen transgenic mice, screened by restriction landmark genomic scanning for methylation (RLGS-M). Biochem Biophys Res Commun 2000; 267: 109–117.

    Article  CAS  Google Scholar 

  46. Zoeller M . CD44v10 in hematopoiesis and stem cell mobilization. Leuk Lymphoma 2000; 38: 463–480.

    Article  CAS  Google Scholar 

  47. Ghaffari S, Dougherty GJ, Eaves AC, Eaves CJ . Diverse effects of anti-CD44 antibodies on the stromal cell-mediated support of normal but not leukaemic (CML) haemopoiesis in vitro. Br J Haematol 1997; 97: 22–28.

    Article  CAS  Google Scholar 

  48. Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 2004; 103: 2981–2989.

    Article  CAS  Google Scholar 

  49. Teramoto H, Castellone MD, Malek RL, Letwin N, Frank B, Gutkind JS et al. Autocrine activation of an osteopontin–CD44–Rac pathway enhances invasion and transformation by H-RasV12. Oncogene 2005; 24: 489–501.

    Article  CAS  Google Scholar 

  50. Lin YH, Yang-Yen HF . The osteopontin–CD44 survival signal involves activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. J Biol Chem 2001; 276: 46024–46030.

    Article  CAS  Google Scholar 

  51. Lai YY, Qiu JY, Jiang B, Lu XJ, Huang XJ, Zhang Y et al. Characteristics and prognostic factors of acute myeloid leukemia with t(8; 21) (q22; q22). Zhongguo Shi Yan Xue Ye Xue Za Zhi 2005; 13: 733–740.

    Google Scholar 

Download references

Acknowledgements

We thank Dr Joseph Biggs for critical editing of this manuscript and members of Zhang lab for valuable discussions. The Stein Endowment Fund partially supported the departmental molecular biology service laboratory for DNA sequencing and oligonucleotide synthesis. This is manuscript 18718 from The Scripps Research Institute. This work was supported by National Institute of Health Grant no. CA104509 (DEZ). MCL is a fellow of the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D-E Zhang.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterson, L., Wang, Y., Lo, MC. et al. The multi-functional cellular adhesion molecule CD44 is regulated by the 8;21 chromosomal translocation. Leukemia 21, 2010–2019 (2007). https://doi.org/10.1038/sj.leu.2404849

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404849

Keywords

This article is cited by

Search

Quick links