Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Circulating angiopoietin-2 is a strong prognostic factor in acute myeloid leukemia

Abstract

Angiogenesis plays an important role in solid tumors and hematologic malignancies. The angiopoietins act as essential regulators in this process. We investigated the impact of circulating angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2) and soluble Tie2 (sTie2) on overall survival in patients with acute myeloid leukemia (AML). Ang-1, Ang-2 and sTie2 were measured in plasma samples from 68 AML patients and 11 controls using enzyme-linked immunosorbent assay. Circulating levels of Ang-2 and sTie2 (median (range): 1098.0 (361.4–4147.6) pg/ml and 3.40 (1.21–10.00) ng/ml, respectively) were significantly elevated in AML patients as compared to controls (307.9 (199.7–1225.0) pg/ml and 2.88 (1.71–3.29) ng/ml; P<0.001 and P=0.014). In a univariate Cox proportional hazards model, higher levels of Ang-2 and sTie2 were predictive of poor survival. In multivariate analyses, Ang-2 and cytogenetics proved to be independent prognostic factors, with a relative risk of 4.07 (95% confidence interval (CI) 1.88–8.81) and 2.70 (95% CI 1.25–5.81), respectively. The 3-year survival rate for AML patients with Ang-2 levels1495.6 pg/ml was only 14.7% compared to 64.7% for those with Ang-2 levels<1495.6 pg/ml. These data provide evidence that circulating Ang-2 represents an independent prognostic factor in AML and may be used as a prognostic tool in the risk-adapted management of AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Folkman J . Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–1186.

    Article  CAS  Google Scholar 

  2. Risau W . Mechanisms of angiogenesis. Nature 1997; 386: 671–674.

    Article  CAS  Google Scholar 

  3. Hussong JW, Rodgers GM, Shami PJ . Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000; 95: 309–313.

    CAS  PubMed  Google Scholar 

  4. Padro T, Ruiz S, Bieker R, Burger H, Steins M, Kienast J et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 2000; 95: 2637–2644.

    CAS  PubMed  Google Scholar 

  5. Padro T, Bieker R, Ruiz S, Steins M, Retzlaff S, Burger H et al. Overexpression of vascular endothelial growth factor (VEGF) and its cellular receptor KDR (VEGFR-2) in the bone marrow of patients with acute myeloid leukemia. Leukemia 2002; 16: 1302–1310.

    Article  CAS  Google Scholar 

  6. Bellamy WT, Richter L, Frutiger Y, Grogan TM . Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 1999; 59: 728–733.

    CAS  PubMed  Google Scholar 

  7. Rak J, Filmus J, Kerbel RS . Reciprocal paracrine interactions between tumour cells and endothelial cells: the ‘angiogenesis progression’ hypothesis. Eur J Cancer 1996; 32A: 2438–2450.

    Article  CAS  Google Scholar 

  8. Hatfield K, Ryningen A, Corbascio M, Bruserud O . Microvascular endothelial cells increase proliferation and inhibit apoptosis of native human acute myelogenous leukemia blasts. Int J Cancer 2006; 119: 2313–2321.

    Article  CAS  Google Scholar 

  9. Santos SC, Dias S . Internal and external autocrine VEGF/KDR loops regulate survival of subsets of acute leukemia through distinct signaling pathways. Blood 2004; 103: 3883–3889.

    Article  CAS  Google Scholar 

  10. Bieker R, Padro T, Kramer J, Steins M, Kessler T, Retzlaff S et al. Overexpression of basic fibroblast growth factor and autocrine stimulation in acute myeloid leukemia. Cancer Res 2003; 63: 7241–7246.

    CAS  PubMed  Google Scholar 

  11. Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 1997; 89: 1870–1875.

    CAS  PubMed  Google Scholar 

  12. Aguayo A, Estey E, Kantarjian H, Mansouri T, Gidel C, Keating M et al. Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia. Blood 1999; 94: 3717–3721.

    CAS  PubMed  Google Scholar 

  13. Aguayo A, Kantarjian HM, Estey EH, Giles FJ, Verstovsek S, Manshouri T et al. Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer 2002; 95: 1923–1930.

    Article  Google Scholar 

  14. Aref S, Mabed M, Sakrana M, Goda T, El-Sherbiny M . Soluble hepatocyte growth factor (sHGF) and vascular endothelial growth factor (sVEGF) in adult acute myeloid leukemia: relationship to disease characteristics. Hematology 2002; 7: 273–279.

    Article  CAS  Google Scholar 

  15. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 1996; 87: 1161–1169.

    Article  CAS  Google Scholar 

  16. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277: 55–60.

    Article  CAS  Google Scholar 

  17. Wong AL, Haroon ZA, Werner S, Dewhirst MW, Greenberg CS, Peters KG . Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 1997; 81: 567–574.

    Article  CAS  Google Scholar 

  18. Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376: 70–74.

    Article  CAS  Google Scholar 

  19. Sato A, Iwama A, Takakura N, Nishio H, Yancopoulos GD, Suda T . Characterization of TEK receptor tyrosine kinase and its ligands, Angiopoietins, in human hematopoietic progenitor cells. Int Immunol 1998; 10: 1217–1227.

    Article  CAS  Google Scholar 

  20. Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM . Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 1998; 273: 18514–18521.

    Article  CAS  Google Scholar 

  21. Hanahan D . Signaling vascular morphogenesis and maintenance. Science 1997; 277: 48–50.

    Article  CAS  Google Scholar 

  22. Tait CR, Jones PF . Angiopoietins in tumours: the angiogenic switch. J Pathol 2004; 204: 1–10.

    Article  CAS  Google Scholar 

  23. Schliemann C, Bieker R, Padro T, Kessler T, Hintelmann H, Buchner T et al. Expression of angiopoietins and their receptor Tie2 in the bone marrow of patients with acute myeloid leukemia. Haematologica 2006; 91: 1203–1211.

    CAS  PubMed  Google Scholar 

  24. Loges S, Heil G, Bruweleit M, Schoder V, Butzal M, Fischer U et al. Analysis of concerted expression of angiogenic growth factors in acute myeloid leukemia: expression of angiopoietin-2 represents an independent prognostic factor for overall survival. J Clin Oncol 2005; 23: 1109–1117.

    Article  CAS  Google Scholar 

  25. Watarai M, Miwa H, Shikami M, Sugamura K, Wakabayashi M, Satoh A et al. Expression of endothelial cell-associated molecules in AML cells. Leukemia 2002; 16: 112–119.

    Article  CAS  Google Scholar 

  26. Amo Y, Masuzawa M, Hamada Y, Katsuoka K . Observations on angiopoietin 2 in patients with angiosarcoma. Br J Dermatol 2004; 150: 1028–1029.

    Article  CAS  Google Scholar 

  27. Caine GJ, Blann AD, Stonelake PS, Ryan P, Lip GY . Plasma angiopoietin-1, angiopoietin-2 and Tie-2 in breast and prostate cancer: a comparison with VEGF and Flt-1. Eur J Clin Invest 2003; 33: 883–890.

    Article  CAS  Google Scholar 

  28. Quartarone E, Alonci A, Allegra A, Bellomo G, Calabro L, D'Angelo A et al. Differential levels of soluble angiopoietin-2 and Tie-2 in patients with haematological malignancies. Eur J Haematol 2006; 77: 480–485.

    Article  CAS  Google Scholar 

  29. Cheson BD, Bennett JM, Kopecky KJ, Buchner T, Willman CL, Estey EH et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol 2003; 21: 4642–4649.

    Article  Google Scholar 

  30. Buchner T, Berdel WE, Schoch C, Haferlach T, Serve HL, Kienast J et al. Double induction containing either two courses or one course of high-dose cytarabine plus mitoxantrone and postremission therapy by either autologous stem-cell transplantation or by prolonged maintenance for acute myeloid leukemia. J Clin Oncol 2006; 24: 2480–2489.

    Article  Google Scholar 

  31. LeBlanc M, Crowley J . Relative risk trees for censored survival data. Biometrics 1992; 48: 411–425.

    Article  CAS  Google Scholar 

  32. Buchner T, Hiddemann W, Wormann B, Loffler H, Gassmann W, Haferlach T et al. Double induction strategy for acute myeloid leukemia: the effect of high-dose cytarabine with mitoxantrone instead of standard-dose cytarabine with daunorubicin and 6-thioguanine: a randomized trial by the German AML Cooperative Group. Blood 1999; 93: 4116–4124.

    CAS  PubMed  Google Scholar 

  33. Faderl S, Do KA, Johnson MM, Keating M, O'Brien S, Jilani I et al. Angiogenic factors may have a different prognostic role in adult acute lymphoblastic leukemia. Blood 2005; 106: 4303–4307.

    Article  CAS  Google Scholar 

  34. Muller A, Lange K, Gaiser T, Hofmann M, Bartels H, Feller AC et al. Expression of angiopoietin-1 and its receptor TEK in hematopoietic cells from patients with myeloid leukemia. Leuk Res 2002; 26: 163–168.

    Article  CAS  Google Scholar 

  35. Wakabayashi M, Miwa H, Shikami M, Hiramatsu A, Ikai T, Tajima E et al. Autocrine pathway of angiopoietins-Tie2 system in AML cells: association with phosphatidyl-inositol 3 kinase. Hematol J 2004; 5: 353–360.

    Article  CAS  Google Scholar 

  36. Dias S, Hattori K, Heissig B, Zhu Z, Wu Y, Witte L et al. Inhibition of both paracrine and autocrine VEGF/ VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci USA 2001; 98: 10857–10862.

    Article  CAS  Google Scholar 

  37. Scharpfenecker M, Fiedler U, Reiss Y, Augustin HG . The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 2005; 118: 771–780.

    Article  CAS  Google Scholar 

  38. Oliner J, Min H, Leal J, Yu D, Rao S, You E et al. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 2004; 6: 507–516.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG ME 950/3-2) and the Interdisciplinary Center of Clinical Research Münster (IZKF Project no. Kess 2/023/04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R M Mesters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schliemann, C., Bieker, R., Thoennissen, N. et al. Circulating angiopoietin-2 is a strong prognostic factor in acute myeloid leukemia. Leukemia 21, 1901–1906 (2007). https://doi.org/10.1038/sj.leu.2404820

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404820

Keywords

This article is cited by

Search

Quick links