Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Identification of T-cell epitopes for cancer immunotherapy

Abstract

The effectiveness of T-cell-mediated immunotherapy of cancer depends on both an optimal immunostimulatory context of the therapy and the proper selection with respect to quality and quantity of the targeted tumor-associated antigens (TAA), and, more precisely, the T-cell epitopes contained in these tumor proteins. Our progressing insight in human leukocyte antigen (HLA) class I and class II antigen processing and presentation mechanisms has improved the prediction by reverse immunology of novel cytotoxic T lymphocyte and T-helper cell epitopes within known antigens. Computer algorithms that in silico predict HLA class I and class II binding, proteasome cleavage patterns and transporter associated with antigen processing translocation are now available to expedite epitope identification. The advent of genomics allows a high-throughput screening for tumor-specific transcripts and mutations, with that identifying novel shared and unique TAA. The increasing power of mass spectrometry and proteomics will lead to the direct identification from the tumor cell surface of numerous novel tumor-specific HLA class I and class II presented ligands. Together, the expanded repertoire of tumor-specific T-cell epitopes will enable more precise immunomonitoring and the development of effective epitope-defined adoptive T-cell transfer and multi-epitope-based vaccination strategies targeting epitopes derived from a wider diversity of TAA presented in a broader array of HLA molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Zinkernagel RM, Doherty PC . Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 1974; 248: 701–702.

    CAS  Google Scholar 

  2. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC . Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987; 329: 506–512.

    CAS  Google Scholar 

  3. Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG . Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991; 351: 290–296.

    CAS  Google Scholar 

  4. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde BJ et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254: 1643–1647.

    CAS  Google Scholar 

  5. Traversari C, van der Bruggen P, Luescher IF, Lurquin C, Chomez P, Van Pel A et al. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 1992; 176: 1453–1457.

    CAS  Google Scholar 

  6. Parmiani G, Castelli C, Dalerba P, Mortarini R, Rivoltini L, Marincola FM et al. Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst 2002; 94: 805–818.

    CAS  Google Scholar 

  7. Rosenberg SA, Yang JC, Restifo NP . Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10: 909–915.

    CAS  Google Scholar 

  8. Kolb HJ, Simoes B, Schmid C . Cellular immunotherapy after allogeneic stem cell transplantation in hematologic malignancies. Curr Opin Oncol 2004; 16: 167–173.

    Google Scholar 

  9. van der Bruggen P, Van den Eynde BJ . Processing and presentation of tumor antigens and vaccination strategies. Curr Opin Immunol 2006; 18: 98–104.

    CAS  Google Scholar 

  10. Berzofsky JA, Terabe M, Oh S, Belyakov IM, Ahlers JD, Janik JE et al. Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Invest 2004; 113: 1515–1525.

    CAS  Google Scholar 

  11. Melief CJ, van der Burg SH, Toes RE, Ossendorp F, Offringa R . Effective therapeutic anticancer vaccines based on precision guiding of cytolytic T lymphocytes. Immunol Rev 2002; 188: 177–182.

    CAS  Google Scholar 

  12. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298: 850–854.

    CAS  Google Scholar 

  13. Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP . Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 2005; 26: 111–117.

    CAS  Google Scholar 

  14. Kessels HW, Wolkers MC, Schumacher TN . Adoptive transfer of T-cell immunity. Trends Immunol 2002; 23: 264–269.

    CAS  Google Scholar 

  15. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    CAS  Google Scholar 

  16. Schmollinger JC, Vonderheide RH, Hoar KM, Maecker B, Schultze JL, Hodi FS et al. Melanoma inhibitor of apoptosis protein (ML-IAP) is a target for immune-mediated tumor destruction. Proc Natl Acad Sci USA 2003; 100: 3398–3403.

    CAS  Google Scholar 

  17. Jocham D, Richter A, Hoffmann L, Iwig K, Fahlenkamp D, Zakrzewski G et al. Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled trial. Lancet 2004; 363: 594–599.

    CAS  Google Scholar 

  18. Vermorken JB, Claessen AM, van Tinteren H, Gall HE, Ezinga R, Meijer S et al. Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet 1999; 353: 345–350.

    CAS  Google Scholar 

  19. Soiffer R, Lynch T, Mihm M, Jung K, Rhuda C, Schmollinger JC et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA 1998; 95: 13141–13146.

    CAS  Google Scholar 

  20. Zhou X, Jun DY, Thomas AM, Huang X, Huang LQ, Mautner J et al. Diverse CD8+ T-cell responses to renal cell carcinoma antigens in patients treated with an autologous granulocyte-macrophage colony-stimulating factor gene-transduced renal tumor cell vaccine. Cancer Res 2005; 65: 1079–1088.

    CAS  Google Scholar 

  21. Nair SK, Synder D, Rouse BT, Gilboa E . Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. Int J Cancer 1997; 70: 706–715.

    CAS  Google Scholar 

  22. Su Z, Dannull J, Heiser A, Yancey D, Pruitt S, Madden J et al. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res 2003; 63: 2127–2133.

    CAS  Google Scholar 

  23. Markovic SN, Dietz AB, Greiner CW, Maas ML, Butler GW, Padley DJ et al. Preparing clinical-grade myeloid dendritic cells by electroporation-mediated transfection of in vitro amplified tumor-derived mRNA and safety testing in stage IV malignant melanoma. J Transl Med 2006; 4: 35–47.

    Google Scholar 

  24. Schaft N, Dorrie J, Thumann P, Beck VE, Muller I, Schultz ES et al. Generation of an optimized polyvalent monocyte-derived dendritic cell vaccine by transfecting defined RNAs after rather than before maturation. J Immunol 2005; 174: 3087–3097.

    CAS  Google Scholar 

  25. Cerundolo V, Hermans IF, Salio M . Dendritic cells: a journey from laboratory to clinic. Nat Immunol 2004; 5: 7–10.

    CAS  Google Scholar 

  26. Lesterhuis WJ, de Vries IJ, Adema GJ, Punt CJ . Dendritic cell-based vaccines in cancer immunotherapy: an update on clinical and immunological results. Ann Oncol 2004; 15 (Suppl 4): iv145–iv151.

    Google Scholar 

  27. van der Burg SH, Bijker MS, Welters MJ, Offringa R, Melief CJ . Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. Adv Drug Deliv Rev 2006; 58: 916–930.

    CAS  Google Scholar 

  28. Hamilton SE, Wolkers MC, Schoenberger SP, Jameson SC . The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat Immunol 2006; 7: 475–481.

    CAS  Google Scholar 

  29. Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP . CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003; 421: 852–856.

    CAS  Google Scholar 

  30. Kumaraguru U, Suvas S, Biswas PS, Azkur AK, Rouse BT . Concomitant helper response rescues otherwise low avidity CD8+ memory CTLs to become efficient effectors in vivo. J Immunol 2004; 172: 3719–3724.

    CAS  Google Scholar 

  31. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ . T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 1998; 393: 480–483.

    Article  CAS  Google Scholar 

  32. Daftarian P, Sharan R, Haq W, Ali S, Longmate J, Termini J et al. Novel conjugates of epitope fusion peptides with CpG-ODN display enhanced immunogenicity and HIV recognition. Vaccine 2005; 23: 3453–3468.

    CAS  Google Scholar 

  33. Zwaveling S, Ferreira Mota SC, Nouta J, Johnson M, Lipford GB, Offringa R et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J Immunol 2002; 169: 350–358.

    CAS  Google Scholar 

  34. Yamshchikov GV, Mullins DW, Chang CC, Ogino T, Thompson L, Presley J et al. Sequential immune escape and shifting of T cell responses in a long-term survivor of melanoma. J Immunol 2005; 174: 6863–6871.

    CAS  Google Scholar 

  35. Khong HT, Wang QJ, Rosenberg SA . Identification of multiple antigens recognized by tumor-infiltrating lymphocytes from a single patient: tumor escape by antigen loss and loss of MHC expression. J Immunother 2004; 27: 184–190.

    Google Scholar 

  36. Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA 2005; 102: 16013–16018.

    CAS  Google Scholar 

  37. Parmiani G, De Filippo A, Novellino L, Castelli C . Unique human tumor antigens: immunobiology and use in clinical trials. J Immunol 2007; 178: 1975–1979.

    CAS  Google Scholar 

  38. Slingluff Jr CL, Colella TA, Thompson L, Graham DD, Skipper JC, Caldwell J et al. Melanomas with concordant loss of multiple melanocytic differentiation proteins: immune escape that may be overcome by targeting unique or undefined antigens. Cancer Immunol Immunother 2000; 48: 661–672.

    CAS  Google Scholar 

  39. Khong HT, Rosenberg SA . Pre-existing immunity to tyrosinase-related protein (TRP)-2, a new TRP-2 isoform, and the NY-ESO-1 melanoma antigen in a patient with a dramatic response to immunotherapy. J Immunol 2002; 168: 951–956.

    CAS  Google Scholar 

  40. Milner E, Barnea E, Beer I, Admon A . The turnover kinetics of major histocompatibility complex peptides of human cancer cells. Mol Cell Proteomics 2006; 5: 357–365.

    CAS  Google Scholar 

  41. Vierboom MP, Zwaveling S, Bos GMJ, Ooms M, Krietemeijer GM, Melief CJ et al. High steady-state levels of p53 are not a prerequisite for tumor eradication by wild-type p53-specific cytotoxic T lymphocytes. Cancer Res 2000; 60: 5508–5513.

    CAS  Google Scholar 

  42. Coulie PG, Lehmann F, Lethe B, Herman J, Lurquin C, Andrawiss M et al. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci USA 1995; 92: 7976–7980.

    CAS  Google Scholar 

  43. Sensi M, Anichini A . Unique tumor antigens: evidence for immune control of genome integrity and immunogenic targets for T cell-mediated patient-specific immunotherapy. Clin Cancer Res 2006; 12: 5023–5032.

    CAS  Google Scholar 

  44. Ikeda H, Lethe B, Lehmann F, van Baren N, Baurain JF, De Smet C et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 1997; 6: 199–208.

    CAS  Google Scholar 

  45. Novellino L, Castelli C, Parmiani G . A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 2005; 54: 187–207.

    CAS  Google Scholar 

  46. Kawakami Y, Fujita T, Matsuzaki Y, Sakurai T, Tsukamoto M, Toda M et al. Identification of human tumor antigens and its implications for diagnosis and treatment of cancer. Cancer Sci 2004; 95: 784–791.

    CAS  Google Scholar 

  47. Jager D, Taverna C, Zippelius A, Knuth A . Identification of tumor antigens as potential target antigens for immunotherapy by serological expression cloning. Cancer Immunol Immunother 2004; 53: 144–147.

    Google Scholar 

  48. Vigneron N, Stroobant V, Chapiro J, Ooms A, Degiovanni G, Morel S et al. An antigenic peptide produced by peptide splicing in the proteasome. Science 2004; 304: 587–590.

    CAS  Google Scholar 

  49. Hanada K, Yewdell JW, Yang JC . Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 2004; 427: 252–256.

    CAS  Google Scholar 

  50. Boel P, Wildmann C, Sensi ML, Brasseur R, Renauld JC, Coulie P et al. BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity 1995; 2: 167–175.

    CAS  Google Scholar 

  51. Van den Eynde BJ, Peeters O, De Backer O, Gaugler B, Lucas S, Boon T . A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. J Exp Med 1995; 182: 689–698.

    CAS  Google Scholar 

  52. Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Rivoltini L, Topalian SL et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci USA 1994; 91: 3515–3519.

    CAS  Google Scholar 

  53. Coulie PG, Brichard V, Van Pel A, Wolfel T, Schneider J, Traversari C et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas (see comments). J Exp Med 1994; 180: 35–42.

    CAS  Google Scholar 

  54. Brichard V, Van Pel A, Wolfel T, Wolfel C, De Plaen E, Lethe B et al. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1993; 178: 489–495.

    CAS  Google Scholar 

  55. Bakker AB, Schreurs MW, de Boer AJ, Kawakami Y, Rosenberg SA, Adema GJ et al. Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J Exp Med 1994; 179: 1005–1009.

    CAS  Google Scholar 

  56. Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 1995; 92: 11810–11813.

    CAS  Google Scholar 

  57. Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 1997; 94: 1914–1918.

    CAS  Google Scholar 

  58. Viatte S, Alves PM, Romero P . Reverse immunology approach for the identification of CD8 T-cell-defined antigens: advantages and hurdles. Immunol Cell Biol 2006; 84: 318–330.

    CAS  Google Scholar 

  59. Martelange V, De Smet C, De Plaen E, Lurquin C, Boon T . Identification on a human sarcoma of two new genes with tumor-specific expression. Cancer Res 2000; 60: 3848–3855.

    CAS  Google Scholar 

  60. Lucas S, De Smet C, Arden KC, Viars CS, Lethe B, Lurquin C et al. Identification of a new MAGE gene with tumor-specific expression by representational difference analysis. Cancer Res 1998; 58: 743–752.

    CAS  Google Scholar 

  61. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW . Serial analysis of gene expression. Science 1995; 270: 484–487.

    CAS  Google Scholar 

  62. Higgins JP, Shinghal R, Gill H, Reese JH, Terris M, Cohen RJ et al. Gene expression patterns in renal cell carcinoma assessed by complementary DNA microarray. Am J Pathol 2003; 162: 925–932.

    CAS  Google Scholar 

  63. Lapointe J, Li C, Higgins JP, van de RM, Bair E, Montgomery K et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 2004; 101: 811–816.

    CAS  Google Scholar 

  64. Sugita M, Geraci M, Gao B, Powell RL, Hirsch FR, Johnson G et al. Combined use of oligonucleotide and tissue microarrays identifies cancer/testis antigens as biomarkers in lung carcinoma. Cancer Res 2002; 62: 3971–3979.

    CAS  Google Scholar 

  65. 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–536.

    Google Scholar 

  66. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G et al. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446: 153–158.

    CAS  Google Scholar 

  67. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006; 314: 268–274.

    Google Scholar 

  68. Khong HT, Restifo NP . Natural selection of tumor variants in the generation of ‘tumor escape’ phenotypes. Nat Immunol 2002; 3: 999–1005.

    CAS  Google Scholar 

  69. Kessler JH, Bres-Vloemans SA, van Veelen PA, de Ru A, Huijbers IJ, Camps M et al. BCR-ABL fusion regions as a source of multiple leukemia-specific CD8(+) T-cell epitopes. Leukemia 2006; 20: 1738–1750.

    CAS  Google Scholar 

  70. Advani A, Pendergast A . Bcr-Abl variants: biological and clinical aspects. Leuk Res 2002; 26: 713.

    CAS  Google Scholar 

  71. Altieri DC . Validating survivin as a cancer therapeutic target. Nat Rev Cancer 2003; 3: 46–54.

    CAS  Google Scholar 

  72. Bachinsky MM, Guillen DE, Patel SR, Singleton J, Chen C, Soltis DA et al. Mapping and binding analysis of peptides derived from the tumor-associated antigen survivin for eight HLA alleles. Cancer Immun 2005; 5: 6–14.

    Google Scholar 

  73. Thomas M, Suwa T, Yang L, Zhao L, Hawks CL, Hornsby PJ . Cooperation of hTERT, SV40 T antigen and oncogenic Ras in tumorigenesis: a cell transplantation model using bovine adrenocortical cells. Neoplasia 2002; 4: 493–500.

    CAS  Google Scholar 

  74. Massard C, Zermati Y, Pauleau AL, Larochette N, Metivier D, Sabatier L et al. hTERT: a novel endogenous inhibitor of the mitochondrial cell death pathway. Oncogene 2006; 25: 4505–4514.

    CAS  Google Scholar 

  75. Epping MT, Bernards R . A causal role for the human tumor antigen preferentially expressed antigen of melanoma in cancer. Cancer Res 2006; 66: 10639–10642.

    CAS  Google Scholar 

  76. Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA 2006; 103: 2794–2799.

    CAS  Google Scholar 

  77. Epping MT, Wang L, Edel MJ, Carlee L, Hernandez M, Bernards R . The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell 2005; 122: 835–847.

    CAS  Google Scholar 

  78. Colella TA, Bullock TN, Russell LB, Mullins DW, Overwijk WW, Luckey CJ et al. Self-tolerance to the murine homologue of a tyrosinase-derived melanoma antigen: implications for tumor immunotherapy. J Exp Med 2000; 191: 1221–1232.

    CAS  Google Scholar 

  79. Engelhard VH, Bullock TN, Colella TA, Sheasley SL, Mullins DW . Antigens derived from melanocyte differentiation proteins: self-tolerance, autoimmunity, and use for cancer immunotherapy. Immunol Rev 2002; 188: 136–146.

    CAS  Google Scholar 

  80. Rammensee HG, Weinschenk T, Gouttefangeas C, Stevanovic S . Towards patient-specific tumor antigen selection for vaccination. Immunol Rev 2002; 188: 164–176.

    CAS  Google Scholar 

  81. Weinschenk T, Gouttefangeas C, Schirle M, Obermayr F, Walter S, Schoor O et al. Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res 2002; 62: 5818–5827.

    CAS  Google Scholar 

  82. Chaux P, Luiten R, Demotte N, Vantomme V, Stroobant V, Traversari C et al. Identification of five MAGE-A1 epitopes recognized by cytolytic T lymphocytes obtained by in vitro stimulation with dendritic cells transduced with MAGE-A1. J Immunol 1999; 163: 2928–2936.

    CAS  Google Scholar 

  83. Cox AL, Skipper J, Chen Y, Henderson RA, Darrow TL, Shabanowitz J et al. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 1994; 264: 716–719.

    CAS  Google Scholar 

  84. Skipper JC, Gulden PH, Hendrickson RC, Harthun N, Caldwell JA, Shabanowitz J et al. Mass-spectrometric evaluation of HLA-A*0201-associated peptides identifies dominant naturally processed forms of CTL epitopes from MART-1 and gp100. Int J Cancer 1999; 82: 669–677.

    CAS  Google Scholar 

  85. Kao H, Marto JA, Hoffmann TK, Shabanowitz J, Finkelstein SD, Whiteside TL et al. Identification of cyclin B1 as a shared human epithelial tumor-associated antigen recognized by T cells. J Exp Med 2001; 194: 1313–1323.

    CAS  Google Scholar 

  86. den Haan JM, Sherman NE, Blokland E, Huczko E, Koning F, Drijfhout JW et al. Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 1995; 268: 1476–1480.

    CAS  Google Scholar 

  87. van Hall T, Wolpert EZ, van Veelen P, Laban S, van der Veer M, Roseboom M et al. Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants. Nat Med 2006; 12: 417–424.

    CAS  Google Scholar 

  88. van Bergen CAM, Kester MG, Jedema I, Heemskerk MHM, van Luxemburg-Heijs SAP, Kloosterboer FM et al. Multiple myeloma reactive T cells recognize an activation induced minor histocompatibility antigen encoded by the ATP dependent interferon responsive (ADIR) gene. Blood 2007; 109: 4089–4096.

    CAS  Google Scholar 

  89. Skipper JC, Hendrickson RC, Gulden PH, Brichard V, Van Pel A, Chen Y et al. An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J Exp Med 1996; 183: 527–534.

    CAS  Google Scholar 

  90. Engelhard VH, Altrich-Vanlith M, Ostankovitch M, Zarling AL . Post-translational modifications of naturally processed MHC-binding epitopes. Curr Opin Immunol 2006; 18: 92–97.

    CAS  Google Scholar 

  91. Warren EH, Vigneron NJ, Gavin MA, Coulie PG, Stroobant V, Dalet A et al. An antigen produced by splicing of noncontiguous peptides in the reverse order. Science 2006; 313: 1444–1447.

    CAS  Google Scholar 

  92. Rubio-Godoy V, Ayyoub M, Dutoit V, Servis C, Schink A, Rimoldi D et al. Combinatorial peptide library-based identification of peptide ligands for tumor-reactive cytolytic T lymphocytes of unknown specificity. Eur J Immunol 2002; 32: 2292–2299.

    CAS  Google Scholar 

  93. Kloetzel PM, Ossendorp F . Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 2004; 16: 76–81.

    CAS  Google Scholar 

  94. Saveanu L, Carroll O, Hassainya Y, van Endert P . Complexity, contradictions, and conundrums: studying post-proteasomal proteolysis in HLA class I antigen presentation. Immunol Rev 2005; 207: 42–59.

    CAS  Google Scholar 

  95. Yewdell JW, Nicchitta CV . The DRiP hypothesis decennial: support, controversy, refinement and extension. Trends Immunol 2006; 27: 368–373.

    CAS  Google Scholar 

  96. Craiu A, Akopian T, Goldberg A, Rock KL . Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proc Natl Acad Sci USA 1997; 94: 10850–10855.

    CAS  Google Scholar 

  97. Mo XY, Cascio P, Lemerise K, Goldberg AL, Rock K . Distinct proteolytic processes generate the C and N termini of MHC class I-binding peptides. J Immunol 1999; 163: 5851–5859.

    CAS  Google Scholar 

  98. Stoltze L, Dick TP, Deeg M, Pommerl B, Rammensee HG, Schild H . Generation of the vesicular stomatitis virus nucleoprotein cytotoxic T lymphocyte epitope requires proteasome-dependent and -independent proteolytic activities. Eur J Immunol 1998; 28: 4029–4036.

    CAS  Google Scholar 

  99. Yewdell JW, Reits E, Neefjes J . Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat Rev Immunol 2003; 3: 952–961.

    CAS  Google Scholar 

  100. Robinson J, Malik A, Parham P, Bodmer JG, Marsh SG . IMGT/HLA database – a sequence database for the human major histocompatibility complex. Tissue Antigens 2000; 55: 280–287.

    CAS  Google Scholar 

  101. Sette A, Sidney J . HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. Curr Opin Immunol 1998; 10: 478–482.

    CAS  Google Scholar 

  102. Parker KC, Bednarek MA, Coligan JE . Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 1994; 152: 163–175.

    CAS  Google Scholar 

  103. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S . SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999; 50: 213–219.

    CAS  Google Scholar 

  104. Nussbaum AK, Kuttler C, Tenzer S, Schild H . Using the World Wide Web for predicting CTL epitopes. Curr Opin Immunol 2003; 15: 69–74.

    CAS  Google Scholar 

  105. Korber B, LaBute M, Yusim K . Immunoinformatics comes of age. PLoS Comput Biol 2006; 2: e71.

    Google Scholar 

  106. Brusic V, Bajic VB, Petrovsky N . Computational methods for prediction of T-cell epitopes – a framework for modelling, testing, and applications. Methods 2004; 34: 436–443.

    CAS  Google Scholar 

  107. Peters B, Bui HH, Frankild S, Nielson M, Lundegaard C, Kostem E et al. A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput Biol 2006; 2: e65.

    Google Scholar 

  108. Kessler JH, Mommaas B, Mutis T, Huijbers I, Vissers D, Benckhuijsen WE et al. Competition-based cellular peptide binding assays for 13 prevalent HLA class I alleles using fluorescein-labeled synthetic peptides. Hum Immunol 2003; 64: 245–255.

    CAS  Google Scholar 

  109. van der Burg SH, Visseren MJ, Brandt RM, Kast WM, Melief CJ . Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J Immunol 1996; 156: 3308–3314.

    CAS  Google Scholar 

  110. Celis E, Tsai V, Crimi C, DeMars R, Wentworth PA, Chesnut RW et al. Induction of anti-tumor cytotoxic T lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc Natl Acad Sci USA 1994; 91: 2105–2109.

    CAS  Google Scholar 

  111. van der Bruggen P, Bastin J, Gajewski T, Coulie PG, Boel P, De Smet C et al. A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur J Immunol 1994; 24: 3038–3043.

    CAS  Google Scholar 

  112. Kawashima I, Hudson SJ, Tsai V, Southwood S, Takesako K, Appella E et al. The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol 1998; 59: 1–14.

    CAS  Google Scholar 

  113. Oiso M, Eura M, Katsura F, Takiguchi M, Sobao Y, Masuyama K et al. A newly identified MAGE-3-derived epitope recognized by HLA-A24-restricted cytotoxic T lymphocytes. Int J Cancer 1999; 81: 387–394.

    CAS  Google Scholar 

  114. Zaks TZ, Rosenberg SA . Immunization with a peptide epitope (p369–377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER- 2/neu+ tumors. Cancer Res 1998; 58: 4902–4908.

    CAS  Google Scholar 

  115. Disis ML, Smith JW, Murphy AE, Chen W, Cheever MA . In vitro generation of human cytolytic T-cells specific for peptides derived from the HER-2/neu protooncogene protein. Cancer Res 1994; 54: 1071–1076.

    CAS  Google Scholar 

  116. Nijman HW, van der Burg SH, Vierboom MP, Houbiers JG, Kast WM, Melief CJ . p53, a potential target for tumor-directed T cells. Immunol Lett 1994; 40: 171–178.

    CAS  Google Scholar 

  117. van Elsas A, Nijman HW, van der Minne CE, Mourer JS, Kast WM, Melief CJ et al. Induction and characterization of cytotoxic T-lymphocytes recognizing a mutated p21ras peptide presented by HLA-A*0201. Int J Cancer 1995; 61: 389–396.

    CAS  Google Scholar 

  118. Pelte C, Cherepnev G, Wang Y, Schoenemann C, Volk HD, Kern F . Random screening of proteins for HLA-A*0201-binding nine-amino acid peptides is not sufficient for identifying CD8T cell epitopes recognized in the context of HLA-A*0201. J Immunol 2004; 172: 6783–6789.

    CAS  Google Scholar 

  119. Kessler JH, Beekman NJ, Bres-Vloemans SA, Verdijk P, van Veelen PA, Kloosterman-Joosten AM et al. Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J Exp Med 2001; 193: 73–88.

    CAS  Google Scholar 

  120. Asemissen AM, Keilholz U, Tenzer S, Muller M, Walter S, Stevanovic S et al. Identification of a highly immunogenic HLA-A*01-binding T cell epitope of WT1. Clin Cancer Res 2006; 12: 7476–7482.

    CAS  Google Scholar 

  121. Walton SM, Gerlinger M, de la RO, Nuber N, Knights A, Gati A et al. Spontaneous CD8T cell responses against the melanocyte differentiation antigen RAB38/NY-MEL-1 in melanoma patients. J Immunol 2006; 177: 8212–8218.

    CAS  Google Scholar 

  122. Ayyoub M, Stevanovic S, Sahin U, Guillaume P, Servis C, Rimoldi D et al. Proteasome-assisted identification of a SSX-2-derived epitope recognized by tumor-reactive CTL infiltrating metastatic melanoma. J Immunol 2002; 168: 1717–1722.

    CAS  Google Scholar 

  123. Mommaas B, Kamp J, Drijfhout JW, Beekman N, Ossendorp F, van Veelen P et al. Identification of a novel HLA-B60-restricted T cell epitope of the minor histocompatibility antigen HA-1 locus. J Immunol 2002; 169: 3131–3136.

    CAS  Google Scholar 

  124. Toma A, Haddouk S, Briand JP, Camoin L, Gahery H, Connan F et al. Recognition of a subregion of human proinsulin by class I-restricted T cells in type 1 diabetic patients. Proc Natl Acad Sci USA 2005; 102: 10581–10586.

    CAS  Google Scholar 

  125. Pinkse GG, Tysma OH, Bergen CA, Kester MG, Ossendorp F, van Veelen PA et al. Autoreactive CD8T cells associated with beta cell destruction in type 1 diabetes. Proc Natl Acad Sci USA 2005; 102: 18425–18430.

    CAS  Google Scholar 

  126. Hassainya Y, Garcia-Pons F, Kratzer R, Lindo V, Greer F, Lemonnier FA et al. Identification of naturally processed HLA-A2 – restricted proinsulin epitopes by reverse immunology. Diabetes 2005; 54: 2053–2059.

    CAS  Google Scholar 

  127. Holzhutter HG, Frommel C, Kloetzel PM . A theoretical approach towards the identification of cleavage-determining amino acid motifs of the 20 S proteasome. J Mol Biol 1999; 286: 1251–1265.

    CAS  Google Scholar 

  128. Kuttler C, Nussbaum AK, Dick TP, Rammensee HG, Schild H, Hadeler KP . An algorithm for the prediction of proteasomal cleavages. J Mol Biol 2000; 298: 417–429.

    CAS  Google Scholar 

  129. Kesmir C, Nussbaum AK, Schild H, Detours V, Brunak S . Prediction of proteasome cleavage motifs by neural networks. Protein Eng 2002; 15: 287–296.

    CAS  Google Scholar 

  130. Bhasin M, Raghava GP . Pcleavage: an SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences. Nucleic Acids Res 2005; 33 (Web Server issue): W202–W207.

    CAS  Google Scholar 

  131. Nussbaum AK, Dick TP, Keilholz W, Schirle M, Stevanovic S, Dietz K et al. Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc Natl Acad Sci USA 1998; 95: 12504–12509.

    CAS  Google Scholar 

  132. Schultz ES, Chapiro J, Lurquin C, Claverol S, Burlet-Schiltz O, Warnier G et al. The production of a new MAGE-3 peptide presented to cytolytic T lymphocytes by HLA-B40 requires the immunoproteasome. J Exp Med 2002; 195: 391–399.

    CAS  Google Scholar 

  133. Macagno A, Gilliet M, Sallusto F, Lanzavecchia A, Nestle FO, Groettrup M . Dendritic cells up-regulate immunoproteasomes and the proteasome regulator PA28 during maturation. Eur J Immunol 1999; 29: 4037–4042.

    CAS  Google Scholar 

  134. Toes RE, Nussbaum AK, Degermann S, Schirle M, Emmerich NP, Kraft M et al. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J Exp Med 2001; 194: 1–12.

    CAS  Google Scholar 

  135. Chapiro J, Claverol S, Piette F, Ma W, Stroobant V, Guillaume B et al. Destructive cleavage of antigenic peptides either by the immunoproteasome or by the standard proteasome results in differential antigen presentation. J Immunol 2006; 176: 1053–1061.

    CAS  Google Scholar 

  136. Morel S, Levy F, Burlet-Schiltz O, Brasseur F, Probst-Kepper M, Peitrequin AL et al. Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 2000; 12: 107–117.

    CAS  Google Scholar 

  137. Nielsen M, Lundegaard C, Lund O, Kesmir C . The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 2005; 57: 33–41.

    CAS  Google Scholar 

  138. Uebel S, Tampe R . Specificity of the proteasome and the TAP transporter. Curr Opin Immunol 1999; 11: 203–208.

    CAS  Google Scholar 

  139. Fruci D, Lauvau G, Saveanu L, Amicosante M, Butler RH, Polack A et al. Quantifying recruitment of cytosolic peptides for HLA class I presentation: impact of TAP transport. J Immunol 2003; 170: 2977–2984.

    CAS  Google Scholar 

  140. Zhang GL, Petrovsky N, Kwoh CK, August JT, Brusic V . PREDTAP: a system for prediction of peptide binding to the human transporter associated with antigen processing. Immunome Res 2006; 2: 3–14.

    Google Scholar 

  141. Bhasin M, Raghava GP . Analysis and prediction of affinity of TAP binding peptides using cascade SVM. Protein Sci 2004; 13: 596–607.

    CAS  Google Scholar 

  142. Peters B, Bulik S, Tampe R, van Endert PM, Holzhutter HG . Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J Immunol 2003; 171: 1741–1749.

    CAS  Google Scholar 

  143. Bhasin M, Raghava GP . Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 2004; 22: 3195–3204.

    CAS  Google Scholar 

  144. Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, Schatz MM et al. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci 2005; 62: 1025–1037.

    CAS  Google Scholar 

  145. Donnes P, Kohlbacher O . Integrated modeling of the major events in the MHC class I antigen processing pathway. Protein Sci 2005; 14: 2132–2140.

    Google Scholar 

  146. Larsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S, Lund O et al. An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 2005; 35: 2295–2303.

    CAS  Google Scholar 

  147. Doytchinova IA, Guan P, Flower DR . EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics 2006; 7: 131–141.

    Google Scholar 

  148. Peters B, Sidney J, Bourne P, Bui HH, Buus S, Doh G et al. The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol 2005; 3: e91.

    Google Scholar 

  149. Schirle M, Keilholz W, Weber B, Gouttefangeas C, Dumrese T, Becker HD et al. Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach. Eur J Immunol 2000; 30: 2216–2225.

    CAS  Google Scholar 

  150. Schirle M, Weinschenk T, Stevanovic S . Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens. J Immunol Methods 2001; 257: 1–16.

    CAS  Google Scholar 

  151. Scheibenbogen C, Sun Y, Keilholz U, Song M, Stevanovic S, Asemissen AM et al. Identification of known and novel immunogenic T-cell epitopes from tumor antigens recognized by peripheral blood T cells from patients responding to IL-2-based treatment. Int J Cancer 2002; 98: 409–414.

    CAS  Google Scholar 

  152. Pascolo S, Schirle M, Guckel B, Dumrese T, Stumm S, Kayser S et al. A MAGE-A1 HLA-A A*0201 epitope identified by mass spectrometry. Cancer Res 2001; 61: 4072–4077.

    CAS  Google Scholar 

  153. Schultze JL, Michalak S, Seamon MJ, Dranoff G, Jung K, Daley J et al. CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J Clin Invest 1997; 100: 2757–2765.

    CAS  Google Scholar 

  154. Bredenbeck A, Losch FO, Sharav T, Eichler-Mertens M, Filter M, Givehchi A et al. Identification of noncanonical melanoma-associated T cell epitopes for cancer immunotherapy. J Immunol 2005; 174: 6716–6724.

    CAS  Google Scholar 

  155. Probst-Kepper M, Stroobant V, Kridel R, Gaugler B, Landry C, Brasseur F et al. An alternative open reading frame of the human macrophage colony-stimulating factor gene is independently translated and codes for an antigenic peptide of 14 amino acids recognized by tumor-infiltrating CD8T lymphocytes. J Exp Med 2001; 193: 1189–1198.

    CAS  Google Scholar 

  156. Tynan FE, Burrows SR, Buckle AM, Clements CS, Borg NA, Miles JJ et al. T cell receptor recognition of a ‘super-bulged’ major histocompatibility complex class I-bound peptide. Nat Immunol 2005; 6: 1114–1122.

    CAS  Google Scholar 

  157. Samino Y, Lopez D, Guil S, Saveanu L, van Endert PM, Del Val M . A long N-terminally extended nested set of abundant and antigenic MHC class I natural ligands from HIV envelope protein. J Biol Chem 2006; 281: 6358–6365.

    CAS  Google Scholar 

  158. Luckey CJ, Marto JA, Partridge M, Hall E, White FM, Lippolis JD et al. Differences in the expression of human class I MHC alleles and their associated peptides in the presence of proteasome inhibitors. J Immunol 2001; 167: 1212–1221.

    CAS  Google Scholar 

  159. Seifert U, Maranon C, Shmueli A, Desoutter JF, Wesoloski L, Janek K et al. An essential role for tripeptidyl peptidase in the generation of an MHC class I epitope. Nat Immunol 2003; 4: 375–379.

    CAS  Google Scholar 

  160. Wang RF, Wang X, Rosenberg SA . Identification of a novel major histocompatibility complex class II-restricted tumor antigen resulting from a chromosomal rearrangement recognized by CD4(+) T cells. J Exp Med 1999; 189: 1659–1668.

    CAS  Google Scholar 

  161. Wang RF, Wang X, Atwood AC, Topalian SL, Rosenberg SA . Cloning genes encoding MHC class II-restricted antigens: mutated CDC27 as a tumor antigen. Science 1999; 284: 1351–1354.

    CAS  Google Scholar 

  162. Hural JA, Friedman RS, McNabb A, Steen SS, Henderson RA, Kalos M . Identification of naturally processed CD4T cell epitopes from the prostate-specific antigen kallikrein 4 using peptide-based in vitro stimulation. J Immunol 2002; 169: 557–565.

    CAS  Google Scholar 

  163. Valmori D, Qian F, Ayyoub M, Renner C, Merlo A, Gnjatic S et al. Expression of synovial sarcoma X (SSX) antigens in epithelial ovarian cancer and identification of SSX-4 epitopes recognized by CD4+ T cells. Clin Cancer Res 2006; 12: 398–404.

    CAS  Google Scholar 

  164. Slager EH, Borghi M, van der Minne CE, Aarnoudse CA, Havenga MJ, Schrier PI et al. CD4+ Th2 cell recognition of HLA-DR-restricted epitopes derived from CAMEL: a tumor antigen translated in an alternative open reading frame. J Immunol 2003; 170: 1490–1497.

    CAS  Google Scholar 

  165. Li P, Gregg JL, Wang N, Zhou D, O'donnell P, Blum JS et al. Compartmentalization of class II antigen presentation: contribution of cytoplasmic and endosomal processing. Immunol Rev 2005; 207: 206–217.

    CAS  Google Scholar 

  166. Dissanayake SK, Tuera N, Ostrand-Rosenberg S . Presentation of endogenously synthesized MHC class II-restricted epitopes by MHC class II cancer vaccines is independent of transporter associated with Ag processing and the proteasome. J Immunol 2005; 174: 1811–1819.

    CAS  Google Scholar 

  167. Lich JD, Elliott JF, Blum JS . Cytoplasmic processing is a prerequisite for presentation of an endogenous antigen by major histocompatibility complex class II proteins. J Exp Med 2000; 191: 1513–1524.

    CAS  Google Scholar 

  168. Mukherjee P, Dani A, Bhatia S, Singh N, Rudensky AY, George A et al. Efficient presentation of both cytosolic and endogenous transmembrane protein antigens on MHC class II is dependent on cytoplasmic proteolysis. J Immunol 2001; 167: 2632–2641.

    CAS  Google Scholar 

  169. Storni T, Bachmann MF . Loading of MHC class I and II presentation pathways by exogenous antigens: a quantitative in vivo comparison. J Immunol 2004; 172: 6129–6135.

    CAS  Google Scholar 

  170. Tewari MK, Sinnathamby G, Rajagopal D, Eisenlohr LC . A cytosolic pathway for MHC class II-restricted antigen processing that is proteasome and TAP dependent. Nat Immunol 2005; 6: 287–294.

    CAS  Google Scholar 

  171. Zhang GL, Khan AM, Srinivasan KN, August JT, Brusic V . MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides. Nucleic Acids Res 2005; 33 (Web Server issue): W172–W179.

    CAS  Google Scholar 

  172. Donnes P, Kohlbacher O . SVMHC: a server for prediction of MHC-binding peptides. Nucleic Acids Res 2006; 34 (Web Server issue): W194–W197.

    Google Scholar 

  173. Singh H, Raghava GP . ProPred: prediction of HLA-DR binding sites. Bioinformatics 2001; 17: 1236–1237.

    CAS  Google Scholar 

  174. Zarour HM, Storkus WJ, Brusic V, Williams E, Kirkwood JM . NY-ESO-1 encodes DRB1*0401-restricted epitopes recognized by melanoma-reactive CD4+ T cells. Cancer Res 2000; 60: 4946–4952.

    CAS  Google Scholar 

  175. Paschen A, Song M, Osen W, Nguyen XD, Mueller-Berghaus J, Fink D et al. Detection of spontaneous CD4+ T-cell responses in melanoma patients against a tyrosinase-related protein-2-derived epitope identified in HLA-DRB1*0301 transgenic mice. Clin Cancer Res 2005; 11: 5241–5247.

    CAS  Google Scholar 

  176. Schroers R, Shen L, Rollins L, Rooney CM, Slawin K, Sonderstrup G et al. Human telomerase reverse transcriptase-specific T-helper responses induced by promiscuous major histocompatibility complex class II-restricted epitopes. Clin Cancer Res 2003; 9: 4743–4755.

    CAS  Google Scholar 

  177. Zarour HM, Kirkwood JM, Kierstead LS, Herr W, Brusic V, Slingluff Jr CL et al. Melan-A/MART-1(51–73) represents an immunogenic HLA-DR4-restricted epitope recognized by melanoma-reactive CD4(+) T cells. Proc Natl Acad Sci USA 2000; 97: 400–405.

    CAS  Google Scholar 

  178. Ottaviani S, Zhang Y, Boon T, van der BP . A MAGE-1 antigenic peptide recognized by human cytolytic T lymphocytes on HLA-A2 tumor cells. Cancer Immunol Immunother 2005; 54: 1214–1220.

    CAS  Google Scholar 

  179. Kruger T, Schoor O, Lemmel C, Kraemer B, Reichle C, Dengjel J et al. Lessons to be learned from primary renal cell carcinomas: novel tumor antigens and HLA ligands for immunotherapy. Cancer Immunol Immunother 2005; 54: 826–836.

    Google Scholar 

  180. Peakman M, Stevens EJ, Lohmann T, Narendran P, Dromey J, Alexander A et al. Naturally processed and presented epitopes of the islet cell autoantigen IA-2 eluted from HLA-DR4. J Clin Invest 1999; 104: 1449–1457.

    CAS  Google Scholar 

  181. Lemmel C, Weik S, Eberle U, Dengjel J, Kratt T, Becker HD et al. Differential quantitative analysis of MHC ligands by mass spectrometry using stable isotope labeling. Nat Biotechnol 2004; 22: 450–454.

    CAS  Google Scholar 

  182. Meiring HD, Kuipers B, van Gaans-van den Brink JA, Poelen MC, Timmermans H, Baart G et al. Mass tag-assisted identification of naturally processed HLA class II-presented meningococcal peptides recognized by CD4+ T lymphocytes. J Immunol 2005; 174: 5636–5643.

    CAS  Google Scholar 

  183. Meiring HD, Soethout EC, Poelen MC, Mooibroek D, Hoogerbrugge R, Timmermans H et al. Stable isotope tagging of epitopes: a highly selective strategy for the identification of major histocompatibility complex class I-associated peptides induced upon viral infection. Mol Cell Proteomics 2006; 5: 902–913.

    Google Scholar 

  184. Chaux P, Vantomme V, Stroobant V, Thielemans K, Corthals J, Luiten R et al. Identification of MAGE-3 epitopes presented by HLA-DR molecules to CD4(+) T lymphocytes. J Exp Med 1999; 189: 767–778.

    CAS  Google Scholar 

  185. Dengjel J, Decker P, Schoor O, Altenberend F, Weinschenk T, Rammensee HG et al. Identification of a naturally processed cyclin D1 T-helper epitope by a novel combination of HLA class II targeting and differential mass spectrometry. Eur J Immunol 2004; 34: 3644–3651.

    CAS  Google Scholar 

  186. Dengjel J, Nastke MD, Gouttefangeas C, Gitsioudis G, Schoor O, Altenberend F et al. Unexpected abundance of HLA class II presented peptides in primary renal cell carcinomas. Clin Cancer Res 2006; 12 (Part 1): 4163–4170.

    CAS  Google Scholar 

  187. Lee KH . Proteomics: a technology-driven and technology-limited discovery science. Trends Biotechnol 2001; 19: 217–222.

    CAS  Google Scholar 

  188. Hillen N, Stevanovic S . Contribution of mass spectrometry-based proteomics to immunology. Expert Rev Proteomics 2006; 3: 653–664.

    CAS  Google Scholar 

  189. Williamson NA, Purcell AW . Use of proteomics to define targets of T-cell immunity. Expert Rev Proteomics 2005; 2: 367–380.

    CAS  Google Scholar 

  190. Pittet MJ, Zippelius A, Speiser DE, Assenmacher M, Guillaume P, Valmori D et al. Ex vivo IFN-gamma secretion by circulating CD8T lymphocytes: implications of a novel approach for T cell monitoring in infectious and malignant diseases. J Immunol 2001; 166: 7634–7640.

    CAS  Google Scholar 

  191. Lurquin C, Lethe B, De Plaen E, Corbiere V, Theate I, van Baren N et al. Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen. J Exp Med 2005; 201: 249–257.

    CAS  Google Scholar 

  192. Lehmann F, Marchand M, Hainaut P, Pouillart P, Sastre X, Ikeda H et al. Differences in the antigens recognized by cytolytic T cells on two successive metastases of a melanoma patient are consistent with immune selection. Eur J Immunol 1995; 25: 340–347.

    CAS  Google Scholar 

  193. Disis ML, Gralow JR, Bernhard H, Hand SL, Rubin WD, Cheever MA . Peptide-based, but not whole protein, vaccines elicit immunity to HER-2/neu, oncogenic self-protein. J Immunol 1996; 156: 3151–3158.

    CAS  Google Scholar 

  194. Toes RE, Blom RJ, Offringa R, Kast WM, Melief CJ . Enhanced tumor outgrowth after peptide vaccination. Functional deletion of tumor-specific CTL induced by peptide vaccination can lead to the inability to reject tumors. J Immunol 1996; 156: 3911–3918.

    CAS  Google Scholar 

  195. Toes RE, Offringa R, Blom RJ, Melief CJ, Kast WM . Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc Natl Acad Sci USA 1996; 93: 7855–7860.

    CAS  Google Scholar 

  196. Toes RE, Hoeben RC, van der Voort EI, Ressing ME, van der Eb AJ, Melief CJ et al. Protective anti-tumor immunity induced by vaccination with recombinant adenoviruses encoding multiple tumor-associated cytotoxic T lymphocyte epitopes in a string-of-beads fashion. Proc Natl Acad Sci USA 1997; 94: 14660–14665.

    CAS  Google Scholar 

  197. Cavallo F, Offringa R, van der Burg SH, Forni G, Melief CJ . Vaccination for treatment and prevention of cancer in animal models. Adv Immunol 2006; 90: 175–213.

    CAS  Google Scholar 

  198. Vertuani S, Sette A, Sidney J, Southwood S, Fikes J, Keogh E et al. Improved immunogenicity of an immunodominant epitope of the HER-2/neu protooncogene by alterations of MHC contact residues. J Immunol 2004; 172: 3501–3508.

    CAS  Google Scholar 

  199. Gross DA, Graff-Dubois S, Opolon P, Cornet S, Alves P, Bennaceur-Griscelli A et al. High vaccination efficiency of low-affinity epitopes in antitumor immunotherapy. J Clin Invest 2004; 113: 425–433.

    CAS  Google Scholar 

  200. Stuge TB, Holmes SP, Saharan S, Tuettenberg A, Roederer M, Weber JS et al. Diversity and recognition efficiency of T cell responses to cancer. PLoS Med 2004; 1: e28.

    Google Scholar 

  201. Parkhurst MR, Riley JP, Igarashi T, Li Y, Robbins PF, Rosenberg SA . Immunization of patients with the hTERT:540–548 peptide induces peptide-reactive T lymphocytes that do not recognize tumors endogenously expressing telomerase. Clin Cancer Res 2004; 10: 4688–4698.

    CAS  Google Scholar 

  202. Gnjatic S, Jager E, Chen W, Altorki NK, Matsuo M, Lee SY et al. CD8+ T cell responses against a dominant cryptic HLA-A2 epitope after NY-ESO-1 peptide immunization of cancer patients. Proc Natl Acad Sci USA 2002; 99: 11813–11818.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant UL-2005-3245 from the Dutch Cancer Society (Amsterdam, The Netherlands).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J H Kessler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, J., Melief, C. Identification of T-cell epitopes for cancer immunotherapy. Leukemia 21, 1859–1874 (2007). https://doi.org/10.1038/sj.leu.2404787

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404787

Keywords

This article is cited by

Search

Quick links