Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

MN1 overexpression is an important step in the development of inv(16) AML

Abstract

The gene encoding the transcriptional co-activator MN1 is the target of the reciprocal chromosome translocation (12;22)(p13;q12) in some patients with acute myeloid leukemia (AML). In addition, expression array analysis showed that MN1 was overexpressed in AML specified by inv(16), in some AML overexpressing ecotropic viral integration 1 site (EVI1) and in some AML without karyotypic abnormalities. Here we describe that mice receiving transplants of bone marrow (BM) overexpressing MN1 rapidly developed myeloproliferative disease (MPD). This BM also generated myeloid cell lines in culture. By mimicking the situation in human inv(16) AML, forced coexpression of MN1 and Cbfβ–SMMHC rapidly caused AML in mice. These findings identify MN1 as a highly effective hematopoietic oncogene and suggest that MN1 overexpression is an important cooperative event in human inv(16) AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lekanne Deprez RH, Groen NA, van Biezen NA, Hagemeijer A, van Drunen E, Koper JW et al. A t(4;22) in a meningioma points to the localization of a putative tumor-suppressor gene. Am J Hum Genet 1991; 48: 783–790.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lekanne Deprez RH, Riegman PH, Groen NA, Warringa UL, van Biezen NA, Molijn AC et al. Cloning and characterization of MN1, a gene from chromosome 22q11, which is disrupted by a balanced translocation in a meningioma 8. Oncogene 1995; 10: 1521–1528.

    CAS  PubMed  Google Scholar 

  3. Buijs A, van Rompaey L, Molijn AC, Davis JN, Vertegaal AC, Potter MD et al. The MN1-TEL fusion protein, encoded by the translocation (12;22)(p13;q11) in myeloid leukemia, is a transcription factor with transforming activity 24. Mol Cell Biol 2000; 20: 9281–9293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van Wely KH, Molijn AC, Buijs A, Meester-Smoor MA, Aarnoudse AJ, Hellemons A et al. The MN1 oncoprotein synergizes with coactivators RAC3 and p300 in RAR-RXR-mediated transcription 5. Oncogene 2003; 22: 699–709.

    Article  CAS  PubMed  Google Scholar 

  5. Chen Z, Fisher RJ, Riggs CW, Rhim JS, Lautenberger JA . Inhibition of vascular endothelial growth factor-induced endothelial cell migration by ETS1 antisense oligonucleotides 10. Cancer Res 1997; 57: 2013–2019.

    CAS  PubMed  Google Scholar 

  6. Leo C, Chen JD . The SRC family of nuclear receptor coactivators 1. Gene 2000; 245: 1–11.

    Article  CAS  PubMed  Google Scholar 

  7. Sutton AL, Zhang X, Ellison TI, Macdonald PN . The 1,25(OH)2D3-regulated transcription factor MN1 stimulates vitamin D receptor-mediated transcription and inhibits osteoblastic cell proliferation 9. Mol Endocrinol 2005; 19: 2234–2244.

    Article  CAS  PubMed  Google Scholar 

  8. Golub TR, Barker GF, Lovett M, Gilliland DG . Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation 2. Cell 1994; 77: 307–316.

    Article  CAS  PubMed  Google Scholar 

  9. Chakrabarti SR, Nucifora G . The leukemia-associated gene TEL encodes a transcription repressor which associates with SMRT and mSin3A 3. Biochem Biophys Res Commun 1999; 264: 871–877.

    Article  CAS  PubMed  Google Scholar 

  10. Fenrick R, Amann JM, Lutterbach B, Wang L, Westendorf JJ, Downing JR et al. Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein 10. Mol Cell Biol 1999; 19: 6566–6574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lopez RG, Carron C, Oury C, Gardellin P, Bernard O, Ghysdael J . TEL is a sequence-specific transcriptional repressor 42. J Biol Chem 1999; 274: 30132–30138.

    Article  CAS  PubMed  Google Scholar 

  12. Carella C, Potter M, Bonten J, Rehg JE, Neale G, Grosveld GC . The ETS factor TEL2 is a hematopoietic oncoprotein 3. Blood 2006; 107: 1124–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kawagoe H, Grosveld GC . Conditional MN1-TEL knock-in mice develop acute myeloid leukemia in conjunction with overexpression of HOXA9 13. Blood 2005; 106: 4269–4277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kawagoe H, Grosveld GC . MN1-TEL myeloid oncoprotein expressed in multipotent progenitors perturbs both myeloid and lymphoid growth and causes T-lymphoid tumors in mice 13. Blood 2005; 106: 4278–4286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X, Song G et al. Gene expression profiling of pediatric acute myelogenous leukemia 12. Blood 2004; 104: 3679–3687.

    Article  CAS  PubMed  Google Scholar 

  16. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia 16. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  17. Heuser M, Beutel G, Krauter J, Dohner K, von Neuhoff N, Schlegelberger B et al. High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood 2006; 108: 3898–3905.

    Article  CAS  PubMed  Google Scholar 

  18. Liu PP, Hajra A, Wijmenga C, Collins FS . Molecular pathogenesis of the chromosome 16 inversion in the M4Eo subtype of acute myeloid leukemia 9. Blood 1995; 85: 2289–2302.

    CAS  PubMed  Google Scholar 

  19. Otto F, Lubbert M, Stock M . Upstream and downstream targets of RUNX proteins 1. J Cell Biochem 2003; 89: 9–18.

    Article  CAS  PubMed  Google Scholar 

  20. Castilla LH, Wijmenga C, Wang Q, Stacy T, Speck NA, Eckhaus M et al. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11 4. Cell 1996; 87: 687–696.

    Article  CAS  PubMed  Google Scholar 

  21. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84: 321–330.

    Article  CAS  PubMed  Google Scholar 

  22. Sasaki K, Yagi H, Bronson RT, Tominaga K, Matsunashi T, Deguchi K et al. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta 22. Proc Natl Acad Sci USA 1996; 93: 12359–12363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis 8. Proc Natl Acad Sci USA 1996; 93: 3444–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Castilla LH, Garrett L, Adya N, Orlic D, Dutra A, Anderson S et al. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia 2. Nat Genet 1999; 23: 144–146.

    Article  CAS  PubMed  Google Scholar 

  25. Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia 1. Cancer Cell 2002; 1: 63–74.

    Article  CAS  PubMed  Google Scholar 

  26. Look AT . Oncogenic transcription factors in the human acute leukemias 5340. Science 1997; 278: 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  27. Castilla LH, Perrat P, Martinez NJ, Landrette SF, Keys R, Oikemus S et al. Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia 14. Proc Natl Acad Sci USA 2004; 101: 4924–4929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Landrette SF, Kuo YH, Hensen K, Barjesteh van Waalwijk van Doorn-Khosrovani S, Perrat PN, Van de Ven WJ et al. Plag1 and Plagl2 are oncogenes that induce acute myeloid leukemia in cooperation with Cbfb-MYH11 7. Blood 2005; 105: 2900–2907.

    Article  CAS  PubMed  Google Scholar 

  29. Cardone M, Kandilci A, Carella C, Nilsson JA, Brennan JA, Sirma S et al. The novel ETS factor TEL2 cooperates with Myc in B lymphomagenesis 6. Mol Cell Biol 2005; 25: 2395–2405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Akashi K, Traver D, Miyamoto T, Weissman IL . A clonogenic common myeloid progenitor that gives rise to all myeloid lineages 6774. Nature 2000; 404: 193–197.

    Article  CAS  PubMed  Google Scholar 

  31. Stanley KK, Szewczuk E . Multiplexed tandem PCR: gene profiling from small amounts of RNA using SYBR Green detection 20. Nucleic Acids Res 2005; 33: e180.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-MO) 3. Br J Haematol 1991; 78: 325–329.

    Article  CAS  PubMed  Google Scholar 

  33. Wijmenga C, Gregory PE, Hajra A, Schrock E, Ried T, Eils R et al. Core binding factor beta-smooth muscle myosin heavy chain chimeric protein involved in acute myeloid leukemia forms unusual nuclear rod-like structures in transformed NIH 3T3 cells. Proc Natl Acad Sci USA 1996; 93: 1630–1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yanagisawa K, Horiuchi T, Fujita S . Establishment and characterization of a new human leukemia cell line derived from M4E0 2. Blood 1991; 78: 451–457.

    CAS  PubMed  Google Scholar 

  35. Ayton PM, Cleary ML . Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9 18. Genes Dev 2003; 17: 2298–2307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. He LZ, Bhaumik M, Tribioli C, Rego EM, Ivins S, Zelent A et al. Two critical hits for promyelocytic leukemia 5. Mol Cell 2000; 6: 1131–1141.

    Article  CAS  PubMed  Google Scholar 

  37. Largaespada DA . Genetic heterogeneity in acute myeloid leukemia: maximizing information flow from MuLV mutagenesis studies 7. Leukemia 2000; 14: 1174–1184.

    Article  CAS  PubMed  Google Scholar 

  38. Barjesteh van Waalwijk van Doorn-Khosrovani S, Spensberger D, de Knegt Y, Tang M, Lowenberg B, Delwel R . Somatic heterozygous mutations in ETV6 (TEL) and frequent absence of ETV6 protein in acute myeloid leukemia 25. Oncogene 2005; 24: 4129–4137.

    Article  PubMed  Google Scholar 

  39. Du Y, Jenkins NA, Copeland NG . Insertional mutagenesis identifies genes that promote the immortalization of primary bone marrow progenitor cells. Blood 2005; 106: 3932–3939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meester-Smoor MA, Vermeij M, van Helmond MJ, Molijn AC, van Wely KH, Hekman AC et al. Targeted disruption of the Mn1 oncogene results in severe defects in development of membranous bones of the cranial skeleton 10. Mol Cell Biol 2005; 25: 4229–4236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blobel GA . CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood 2000; 95: 745–755.

    CAS  PubMed  Google Scholar 

  42. Chen CR, Kang Y, Massague J . Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program 3. Proc Natl Acad Sci USA 2001; 98: 992–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kang Y, Chen CR, Massague J . A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells 4. Mol Cell 2003; 11: 915–926.

    Article  CAS  PubMed  Google Scholar 

  44. Kuo YH, Landrette SF, Heilman SA, Perrat PN, Garrett L, Liu PP et al. Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia 1. Cancer Cell 2006; 9: 57–68.

    Article  CAS  PubMed  Google Scholar 

  45. Grisendi S, Pandolfi PP . NPM mutations in acute myelogenous leukemia 3. N Engl J Med 2005; 352: 291–292.

    Article  CAS  PubMed  Google Scholar 

  46. den Besten W, Kuo ML, Williams RT, Sherr CJ . Myeloid leukemia-associated nucleophosmin mutants Perturb p53-dependent and independent activities of the Arf tumor suppressor protein 11. Cell Cycle 2005; 4: 1593–1598.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Jerold Rehg for the pathological analysis of the mice, Dr Richard Ashmun and Ann-Mary Hamilton Easton for expert FACS analysis and Blake McGourty for the supply of C57Bl/6/129svJ mixed-background mice. This work was supported by NCI Grant CA72999, the Cancer Center (CORE) support grant CA021765, the Dutch Cancer Society Grants EUR98-1778 and DDHK2003-2869, the Intramural Research Programs of NHGRI, NIH and by the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G C Grosveld.

Additional information

Supplementary information accompanies the paper on the Leukemia Web site (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carella, C., Bonten, J., Sirma, S. et al. MN1 overexpression is an important step in the development of inv(16) AML. Leukemia 21, 1679–1690 (2007). https://doi.org/10.1038/sj.leu.2404778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404778

Keywords

This article is cited by

Search

Quick links