Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

Focal adhesion kinase is required for CXCL12-induced chemotactic and pro-adhesive responses in hematopoietic precursor cells

Abstract

Hematopoietic stem/progenitor cells (HSC/P) reside in the bone marrow in distinct anatomic locations (niches) to receive growth, survival and differentiation signals. HSC/P localization and migration between niches depend on cell–cell and cell–matrix interactions, which result from the cooperation of cytokines, chemokines and adhesion molecules. The CXCL12-CXCR4 pathway, in particular, is essential for myelopoiesis and B lymphopoiesis but the molecular mechanisms of CXCL12 action remain unclear. We previously noted a strong correlation between prolonged CXCL12-mediated focal adhesion kinase (FAK) phosphorylation and sustained pro-adhesive responses in progenitor B cells, but not in mature B cells. Although FAK has been well studied in adherent fibroblasts, its function in hematopoietic cells is not defined. We used two independent approaches to reduce FAK expression in (human and mouse) progenitor cells. RNA interference (RNAi)-mediated FAK silencing abolished CXCL12-induced responses in human pro-B leukemia, REH cells. FAK-deficient REH cells also demonstrated reduced CXCL12-induced activation of the GTPase Rap1, suggesting the importance of FAK in CXCL12-mediated integrin activation. Moreover, in FAKflox/flox hematopoietic precursor cells, Cre-mediated FAK deletion resulted in impaired CXCL12-induced chemotaxis. These studies suggest that FAK may function as a key intermediary in signaling pathways controlling hematopoietic cell lodgment and lineage development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Scadden DT . The stem-cell niche as an entity of action. Nature 2006; 441: 1075–1079.

    Article  CAS  Google Scholar 

  2. Kapur R, Cooper R, Zhang L, Williams DA . Cross-talk between alpha(4)beta(1)/alpha(5)beta(1) and c-Kit results in opposing effect on growth and survival of hematopoietic cells via the activation of focal adhesion kinase, mitogen-activated protein kinase, and Akt signaling pathways. Blood 2001; 97: 1975–1981.

    Article  CAS  Google Scholar 

  3. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 1998; 95: 9448–9453.

    Article  CAS  Google Scholar 

  4. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996; 382: 635–638.

    Article  CAS  Google Scholar 

  5. Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 2004; 35: 233–245.

    Article  CAS  Google Scholar 

  6. Ma Q, Jones D, Springer TA . The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 1999; 10: 463–471.

    Article  CAS  Google Scholar 

  7. Papayannopoulou T, Priestley GV, Bonig H, Nakamoto B . The role of G-protein signaling in hematopoietic stem/progenitor cell mobilization. Blood 2003; 101: 4739–4747.

    Article  CAS  Google Scholar 

  8. Scott LM, Priestley GV, Papayannopoulou T . Deletion of alpha4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing. Mol Cell Biol 2003; 23: 9349–9360.

    Article  CAS  Google Scholar 

  9. Bradstock KF, Makrynikola V, Bianchi A, Shen W, Hewson J, Gottlieb DJ . Effects of the chemokine stromal cell-derived factor-1 on the migration and localization of precursor-B acute lymphoblastic leukemia cells within bone marrow stromal layers. Leukemia 2000; 14: 882–888.

    Article  CAS  Google Scholar 

  10. Shen W, Bendall LJ, Gottlieb DJ, Bradstock KF . The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow. Exp Hematol 2001; 29: 1439–1447.

    Article  CAS  Google Scholar 

  11. Spiegel A, Kollet O, Peled A, Abel L, Nagler A, Bielorai B et al. Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood 2004; 103: 2900–2907.

    Article  CAS  Google Scholar 

  12. Burger JA, Kipps TJ . CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006; 107: 1761–1767.

    Article  CAS  Google Scholar 

  13. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005; 201: 1307–1318.

    Article  CAS  Google Scholar 

  14. Papayannopoulou T . Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 2004; 103: 1580–1585.

    Article  CAS  Google Scholar 

  15. Glodek AM, Honczarenko M, Le Y, Campbell JJ, Silberstein LE . Sustained activation of cell adhesion is a differentially regulated process in B lymphopoiesis. J Exp Med 2003; 197: 461–473.

    Article  CAS  Google Scholar 

  16. Hidalgo A, Sanz-Rodriguez F, Rodriguez-Fernandez JL, Albella B, Blaya C, Wright N et al. Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells. Exp Hematol 2001; 29: 345–355.

    Article  CAS  Google Scholar 

  17. Honczarenko M, Douglas RS, Mathias C, Lee B, Ratajczak MZ, Silberstein LE . SDF-1 responsiveness does not correlate with CXCR4 expression levels of developing human bone marrow B cells. Blood 1999; 94: 2990–2998.

    CAS  PubMed  Google Scholar 

  18. Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 2000; 95: 3289–3296.

    CAS  PubMed  Google Scholar 

  19. Flomenberg N, DiPersio J, Calandra G . Role of CXCR4 chemokine receptor blockade using AMD3100 for mobilization of autologous hematopoietic progenitor cells. Acta Haematol 2005; 114: 198–205.

    Article  CAS  Google Scholar 

  20. Le Y, Honczarenko M, Glodek AM, Ho DK, Silberstein LE . CXC chemokine ligand 12-induced focal adhesion kinase activation and segregation into membrane domains is modulated by regulator of G protein signaling 1 in pro-B cells. J Immunol 2005; 174: 2582–2590.

    Article  CAS  Google Scholar 

  21. Wang JF, Park IW, Groopman JE . Stromal cell-derived factor-1alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C. Blood 2000; 95: 2505–2513.

    CAS  PubMed  Google Scholar 

  22. Mitra SK, Hanson DA, Schlaepfer DD . Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 2005; 6: 56–68.

    Article  CAS  Google Scholar 

  23. Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 1995; 377: 539–544.

    Article  CAS  Google Scholar 

  24. Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 2003; 9: 493–501.

    Article  CAS  Google Scholar 

  25. Ray RJ, Stoddart A, Pennycook JL, Huner HO, Furlonger C, Wu GE et al. Stromal cell-independent maturation of IL-7-responsive pro-B cells. J Immunol 1998; 160: 5886–5897.

    CAS  PubMed  Google Scholar 

  26. Mostoslavsky G, Fabian AJ, Rooney S, Alt FW, Mulligan RC . Complete correction of murine Artemis immunodeficiency by lentiviral vector-mediated gene transfer. Proc Natl Acad Sci USA 2006; 103: 16406–16411.

    Article  CAS  Google Scholar 

  27. Mostoslavsky G, Kotton DN, Fabian AJ, Gray JT, Lee JS, Mulligan RC . Efficiency of transduction of highly purified murine hematopoietic stem cells by lentiviral and oncoretroviral vectors under conditions of minimal in vitro manipulation. Mol Ther 2005; 11: 932–940.

    Article  CAS  Google Scholar 

  28. Beggs HE, Schahin-Reed D, Zang K, Goebbels S, Nave KA, Gorski J et al. FAK deficiency in cells contributing to the basal lamina results in cortical abnormalities resembling congenital muscular dystrophies. Neuron 2003; 40: 501–514.

    Article  CAS  Google Scholar 

  29. Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, Jasti AC et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 2003; 302: 445–449.

    Article  CAS  Google Scholar 

  30. Lantz CS, Huff TF . Differential responsiveness of purified mouse c-kit+ mast cells and their progenitors to IL-3 and stem cell factor. J Immunol 1995; 155: 4024–4029.

    CAS  PubMed  Google Scholar 

  31. Avraham S, London R, Fu Y, Ota S, Hiregowdara D, Li J et al. Identification and characterization of a novel related adhesion focal tyrosine kinase (RAFTK) from megakaryocytes and brain. J Biol Chem 1995; 270: 27742–27751.

    Article  CAS  Google Scholar 

  32. Tilghman RW, Slack-Davis JK, Sergina N, Martin KH, Iwanicki M, Hershey ED et al. Focal adhesion kinase is required for the spatial organization of the leading edge in migrating cells. J Cell Sci 2005; 118: 2613–2623.

    Article  CAS  Google Scholar 

  33. Basu S, Broxmeyer HE . Transforming growth factor-{beta}1 modulates responses of CD34+ cord blood cells to stromal cell-der. Blood 2005; 106: 485–493.

    Article  CAS  Google Scholar 

  34. Masumoto A, Hemler ME . Multiple activation states of VLA-4. Mechanistic differences between adhesion to CS1/fibronectin and to vascular cell adhesion molecule-1. J Biol Chem 1993; 268: 228–234.

    CAS  PubMed  Google Scholar 

  35. Constantin G, Majeed M, Giagulli C, Piccio L, Kim JY, Butcher EC et al. Chemokines trigger immediate beta2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 2000; 13: 759–769.

    Article  CAS  Google Scholar 

  36. Garcia-Bernal D, Wright N, Sotillo-Mallo E, Nombela-Arrieta C, Stein JV, Bustelo XR et al. Vav1 and Rac control chemokine-promoted T lymphocyte adhesion mediated by the integrin alpha4beta1. Mol Biol Cell 2005; 16: 3223–3235.

    Article  CAS  Google Scholar 

  37. Kinashi T . Intracellular signalling controlling integrin activation in lymphocytes. Nat Rev Immunol 2005; 5: 546–559.

    Article  CAS  Google Scholar 

  38. Nombela-Arrieta C, Lacalle RA, Montoya MC, Kunisaki Y, Megias D, Marques M et al. Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity 2004; 21: 429–441.

    Article  CAS  Google Scholar 

  39. Kinashi T, Katagiri K . Regulation of lymphocyte adhesion and migration by the small GTPase Rap1 and its effector molecule, RAPL. Immunol Lett 2004; 93: 1–5.

    Article  CAS  Google Scholar 

  40. Shimonaka M, Katagiri K, Nakayama T, Fujita N, Tsuruo T, Yoshie O et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J Cell Biol 2003; 161: 417–427.

    Article  CAS  Google Scholar 

  41. McLeod SJ, Li AH, Lee RL, Burgess AE, Gold MR . The Rap GTPases regulate B cell migration toward the chemokine stromal cell-derived factor-1 (CXCL12): potential role for Rap2 in promoting B cell migration. J Immunol 2002; 169: 1365–1371.

    Article  CAS  Google Scholar 

  42. Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT . pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci USA 1992; 89: 5192–5196.

    Article  CAS  Google Scholar 

  43. Hanks SK, Calalb MB, Harper MC, Patel SK . Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc Natl Acad Sci USA 1992; 89: 8487–8491.

    Article  CAS  Google Scholar 

  44. Guan JL, Shalloway D . Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 1992; 358: 690–692.

    Article  CAS  Google Scholar 

  45. Schoenwaelder SM, Burridge K . Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 1999; 11: 274–286.

    Article  CAS  Google Scholar 

  46. McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC . The role of focal-adhesion kinase in cancer – a new therapeutic opportunity. Nat Rev Cancer 2005; 5: 505–515.

    Article  CAS  Google Scholar 

  47. Recher C, Ysebaert L, Beyne-Rauzy O, Mansat-De Mas V, Ruidavets JB, Cariven P et al. Expression of focal adhesion kinase in acute myeloid leukemia is associated with enhanced blast migration, increased cellularity, and poor prognosis. Cancer Res 2004; 64: 3191–3197.

    Article  CAS  Google Scholar 

  48. Shen TL, Park AY, Alcaraz A, Peng X, Jang I, Koni P et al. Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. J Cell Biol 2005; 169: 941–952.

    Article  CAS  Google Scholar 

  49. Vicente-Manzanares M, Sanchez-Madrid F . Role of the cytoskeleton during leukocyte responses. Nat Rev Immunol 2004; 4: 110–122.

    Article  CAS  Google Scholar 

  50. Gotoh T, Cai D, Tian X, Feig LA, Lerner A . p130Cas regulates the activity of AND-34, a novel Ral, Rap1, and R-Ras guanine nucleotide exchange factor. J Biol Chem 2000; 275: 30118–30123.

    Article  CAS  Google Scholar 

  51. Jansen M, Yang FC, Cancelas JA, Bailey JR, Williams DA . Rac2-deficient hematopoietic stem cells show defective interaction with the hematopoietic microenvironment and long-term engraftment failure. Stem Cells 2005; 23: 335–346.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grants 5 U24 HL074355-03 and 2 T32 HL 066987-06. We thank Dr John Manis for helpful advice and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L E Silberstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glodek, A., Le, Y., Dykxhoorn, D. et al. Focal adhesion kinase is required for CXCL12-induced chemotactic and pro-adhesive responses in hematopoietic precursor cells. Leukemia 21, 1723–1732 (2007). https://doi.org/10.1038/sj.leu.2404769

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404769

Keywords

This article is cited by

Search

Quick links