Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Disorders

Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression

Abstract

Deciphering the BCR-ABL-independent signaling exploited in chronic myeloid leukemia (CML) progression is an important aspect in cancer stem-cell biology. CML stem-cell compartment is dynamic as it progresses to terminal blast crisis where myeloid and lymphoid blasts fail to differentiate. We demonstrate cross-regulation of signaling network involving Sonic hedgehog (Shh), Wnt, Notch and Hox for the inexorable blastic transformation of CD34+ CML cells. Significant upregulation in Patched1, Frizzled2, Lef1, CyclinD1, p21 (P0.0002) and downregulation of HoxA10 and HoxB4 (P0.0001) transcripts in CD34+ cells distinguish blast crisis from chronic CML. We report Shh-dependent Stat3 activation orchestrates these mutually interconnected signaling pathways. Stimulation of CD34+ CML cells with either soluble Shh or Wnt3a did not activate Akt or p44/42–mitogen activated protein kinase (MAPK) pathways. Interestingly, unlike dominant negative Stat3β, introduction of constitutive active Stat3 in CD34+ CML cells induces cross-regulation in gene expression. Additionally, Shh and Wnt3a-dependent regulation of cyclin-dependent kinase inhibitors (CDKI) in CML suggests their role in the network. Taken together, our findings propose that deregulation in the form of hyperactive Shh and Wnt with repressed Notch and Hox pathways involving Stat3, Gli3, β-catenin, CyclinD1, Hes1, HoxA10 and p21 might act synergistically to form an important hub in CML progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jamieson CHM, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-Macrophage progenitors as candidate leukemic stem cells in blast crisis CML. N Engl J Med 2004; 351: 657–667.

    Article  CAS  PubMed  Google Scholar 

  2. Castor A, Nilsson L, Grundstrom IA, Buitenhuis M, Ramirez C, Anderson K et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 2005; 11: 630–637.

    Article  CAS  PubMed  Google Scholar 

  3. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818–822.

    Article  CAS  PubMed  Google Scholar 

  4. Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenic remission following imatinib mesylate treatment. Blood 2003; 101: 4701–4707.

    Article  CAS  PubMed  Google Scholar 

  5. Huntly BJP, Gilliland DG . Leukemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 2005; 5: 311–321.

    CAS  PubMed  Google Scholar 

  6. Duncan AW, Rattis FM, Dimascio LN, Congdon KL, Pazianos G, Zhao C et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005; 6: 314–322.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng T, Rodrigues N, Shen H, Yang YG, Dombkowski D, Sykes M et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000; 287: 1804–1808.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng T, Rodrigues N, Dombkwoski D, Stier S, Scadden DT . Stem cell repopulation efficiency but not pool size is governed by p27kip1. Nat Med 2000; 6: 1235–1240.

    Article  CAS  PubMed  Google Scholar 

  9. Taipale J, Beachy PA . The hedgehog and Wnt signaling pathways in cancer. Nature 2001; 411: 349–354.

    Article  CAS  PubMed  Google Scholar 

  10. Bhardwaj G, Murdoch B, Wu D, Baker DP, Williams KP, Chadwick K et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2001; 2: 172–180.

    Article  CAS  PubMed  Google Scholar 

  11. Grabher C, Boehmer H, Look AT . Notch1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukemia. Nat Rev Cancer 2006; 6: 347–359.

    Article  CAS  PubMed  Google Scholar 

  12. Kamakura S, Oishi K, Yoshimatsu T, Nakafuku M, Masuyama N, Gotoh Y . Notch1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukemia. Nat Cell Biol 2004; 6: 547–554.

    Article  CAS  PubMed  Google Scholar 

  13. Murata K, Hattori M, Hirai N, Shinozuka Y, Hirata H, Kageyama R et al. Hes1 directly controls cell proliferation through the transcriptional repression of p27kip1. Mol Cell Biol 2005; 25: 4262–4271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sarmento LM, Huang H, Limon A, Gordon W, Fernandes J, Tavares MJ et al. Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27kip1 degradation. J Exp Med 2006; 202: 157–168.

    Article  Google Scholar 

  15. Ysebaert L, Chicanne G, Demur C, Toni FD, Houdellier NP, Ruidavets JB et al. Expression of β-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia 2006; 20: 1211–1216.

    Article  CAS  PubMed  Google Scholar 

  16. Lu D, Zhao Y, Tawatao R, Cottam HB, Sen M, Leoni LM et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2004; 101: 3118–3123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zweidler-McKay PA, He Y, Xu L, Rodriguez CG, Karnell FG, Carpenter AC et al. Notch signaling is a potent inducer of growth arrest and apoptosis in a wide range of B-cell malignancies. Blood 2005; 106: 3898–3906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanchez P, Hemandez AM, Stecca B, Kahler AJ, Degueme AM, Barrett A et al. Inhibition of prostate cancer proliferation by interference with sonic hedgehog-Gli1 signaling. Proc Natl Acad Sci USA 2004; 101: 12561–12566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sengupta A, Banerjee D, Chandra S, Banerjee S . Gene therapy for BCR-ABL+ human CML with dual phosphorylation resistant p27kip1 and stable RNA interference using an EBV vector. J Gene Med 2006; 8: 1251–1261.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu J, Zhang Y, Joe GJ, Pompetti R, Emerson SG . NF-Ya activates multiple hematopoietic stem cell (HSC) regulatory genes and promotes HSC self-renewal. Proc Natl Acad Sci USA 2005; 102: 11728–11733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Magnusson M, Brun AC, Miyake N, Larsson J, Ehinger M, Bjornsson JM et al. HoxA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development. Blood 2007; (e-pub: Jan. 18, PMID: 17234739).

    Article  CAS  PubMed  Google Scholar 

  22. Bjornsson JM, Andersson E, Lundstrom P, Larsson N, Xu X, Repetowska E et al. Proliferation of primitive myeloid progenitors can be reversibly induced by HoxA10. Blood 2001; 98: 3301–3308.

    Article  CAS  PubMed  Google Scholar 

  23. Antonchuk J, Sauvageau G, Humphries RK . HoxB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 2002; 109: 39–45.

    Article  CAS  PubMed  Google Scholar 

  24. Beslu N, Krosl J, Laurin M, Mayotte N, Humphries KR, Sauvageau G . Molecular interactions involved in HoxB4-induced activation of HSC self-renewal. Blood 2004; 104: 2307–2314.

    Article  CAS  PubMed  Google Scholar 

  25. Riobo NA, Lu K, Ai X, Haines GM, Emerson CP . Phosphoinositide 3-kinase and Akt are essential for sonic hedgehog signaling. Proc Natl Acad Sci USA 2006; 103: 4505–4510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coppo P, Dusanter-Fourt I, Millot G, Nogueira MM, Dugray A, Bonnet ML et al. Constitutive and specific activation of Stat3 by BCR-ABL in embryonic stem cells. Oncogene 2003; 22: 4102–4110.

    Article  CAS  PubMed  Google Scholar 

  27. Leslie K, Lang C, Devgan G, Azare J, Berishaj M, Gerald W et al. CyclinD1 is transcriptionally regulated by and required for transformation by activated signal transducer and activator of transcription 3. Cancer Res 2006; 66: 2544–2552.

    Article  CAS  PubMed  Google Scholar 

  28. Kawada M, Seno H, Uenoyama Y, Sawabu T, Kanda N, Fukui H et al. Signal transducers and activators of transcription 3 activation is involved in nuclear accumulation of β-catenin in colorectal cancer. Cancer Res 2006; 66: 2913–2917.

    Article  CAS  PubMed  Google Scholar 

  29. Walkley CR, Fero ML, Chien WM, Purton LE, McArthur GA . Negative cell-cycle regulators cooperatively control self-renewal and differentiation of hematopoietic stem cells. Nat Cell Biol 2005; 7: 172–178.

    Article  CAS  PubMed  Google Scholar 

  30. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20: 2096–2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW et al. Notch signaling regulates stem cell numbers in vitro and in vivo. Nature 2006; 442: 823–826.

    Article  CAS  PubMed  Google Scholar 

  32. Steidl U, Kronenwett R, Rohr U, Fenk R, Kliszewski S, Maercker C et al. Gene expression profiling identifies significant differences between the molecular phenotypes of bone marrow-derived and circulating human CD34+ hematopoietic stem cells. Blood 2002; 99: 2037–2044.

    Article  CAS  PubMed  Google Scholar 

  33. Kramer A, Loffler H, Bergmann J, Hochhaus A, Hehlmann R . Proliferating status of peripheral blood progenitor cells from patients with BCR/ABL-positive chronic myelogenous leukemia. Leukemia 2001; 15: 62–68.

    Article  CAS  PubMed  Google Scholar 

  34. Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA 2006; 103: 2794–2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng C, Li L, Haak M, Brors B, Frank O, Giehl M et al. Gene expression profiling of CD34+ cells identifies a molecular signature of chronic myeloid leukemia blast crisis. Leukemia 2006; 20: 1028–1034.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs David Scadden, Jon Aster, Tom Kadesch, Hans Clevers, Chris Albanese, Toshiyuki Sakai, Jacqueline Bromberg and John Clifford for various molecular constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Banerjee.

Additional information

Supplementary Information accompanies the paper on the Leukemia Web site (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengupta, A., Banerjee, D., Chandra, S. et al. Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression. Leukemia 21, 949–955 (2007). https://doi.org/10.1038/sj.leu.2404657

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404657

Keywords

This article is cited by

Search

Quick links