Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A hypothesis for an embryonic origin of pluripotent Oct-4+ stem cells in adult bone marrow and other tissues

Abstract

Accumulating evidence demonstrates that adult tissues contain a population of stem cells that express early developmental markers such as stage-specific embryonic antigen and transcription factors Oct-4 and Nanog. These are the markers characteristic for embryonic stem cells, epiblast stem cells and primordial germ cells. The presence of these stem cells in adult tissues including bone marrow, epidermis, bronchial epithelium, myocardium, pancreas and testes supports the concept that adult tissues contain some population of pluripotent stem cells that is deposited in embryogenesis during early gastrulation. In this review we will discuss these data and present a hypothesis that these cells could be direct descendants of the germ lineage. The germ lineage in order to pass genes on to the next generations creates soma and thus becomes a ‘mother lineage’ for all somatic cell lineages present in the adult body.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006; 20: 857–869.

    Article  CAS  PubMed  Google Scholar 

  2. Pallante BA, Duignan I, Okin D, Chin A, Bressan MC, Mikawa T et al. Bone marrow Oct3/4+ cells differentiate into cardiac myocytes via age-dependent paracrine mechanisms. Circ Res 2007; 100: e1–e11.

    Article  CAS  PubMed  Google Scholar 

  3. Anjos-Afonso F, Bonnet D . Non-hematopoietic/endothelial SSEA-1pos cells defines the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood 2007; 109: 1298–1306.

    Article  CAS  PubMed  Google Scholar 

  4. Baal N, Reisinger K, Jahr H, Bohle RM, Liang O, Munstedt K et al. Expression of transcription factor Oct-4 and other embryonic genes in CD133 positive cells from human umbilical cord blood. Thromb Haemost 2004; 92: 767–775.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao Y, Wang H, Mazzone T . Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp Cell Res 2006; 312: 2454–2464.

    Article  CAS  PubMed  Google Scholar 

  6. McGuckin CP, Forraz N, Baradez MO, Navran S, Zhao J, Urban R et al. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif 2005; 38: 245–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E et al. Morphological and molecular characterization of novel population of CXCR4+SSEA-4+Oct-4+ very small embryonic-like (VSEL) cells purified from human cord blood – preliminary report. Leukemia 2007; 21: 297–303.

    Article  CAS  PubMed  Google Scholar 

  8. Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G et al. Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 2006; 168: 1879–1888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dyce PW, Zhu H, Craig J, Li J . Stem cells with multilineage potential derived from porcine skin. Biochem Biophys Res Commun 2004; 316: 651–658.

    Article  CAS  PubMed  Google Scholar 

  10. Kruse C, Kajahn J, Petschnik AE, Maass A, Klink E, Rapoport DH et al. Adult pancreatic stem/progenitor cells spontaneously differentiate in vitro into multiple cell lineages and form teratoma-like structures. Ann Anat 2006; 188: 503–517.

    Article  CAS  PubMed  Google Scholar 

  11. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 2006; 440: 1199–1203.

    Article  CAS  PubMed  Google Scholar 

  12. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 2004; 119: 1001–1012.

    Article  CAS  PubMed  Google Scholar 

  13. Ling TY, Kuo MD, Li CL, Yu AL, Huang YH, Wu TJ et al. Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci USA 2006; 103: 9530–9535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hay DC, Sutherland L, Clark J, Burdon T . Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 2004; 22: 225–235.

    Article  CAS  PubMed  Google Scholar 

  15. Boiani M, Scholer HR . Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 2005; 6: 872–884.

    Article  CAS  PubMed  Google Scholar 

  16. Niwa H, Miyazaki J, Smith AG . Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000; 24: 372–376.

    Article  CAS  PubMed  Google Scholar 

  17. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631–642.

    Article  CAS  PubMed  Google Scholar 

  18. Muramatsu T, Muramatsu H . Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj J 2004; 21: 41–45.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–49.

    Article  CAS  PubMed  Google Scholar 

  20. Colter DC, Sekiya I, Prockop DJ . Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 2001; 98: 7841–7845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pochampally RR, Smith JR, Ylostalo J, Prockop DJ . Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood 2004; 103: 1647–1652.

    Article  CAS  PubMed  Google Scholar 

  22. D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC . Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 2004; 117: 2971–2981.

    Article  CAS  PubMed  Google Scholar 

  23. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR . Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290: 1779–1782.

    Article  CAS  PubMed  Google Scholar 

  24. Corbel SY, Lee A, Yi L, Duenas J, Brazelton TR, Blau HM et al. Contribution of hematopoietic stem cells to skeletal muscle. Nat Med 2003; 9: 1528–1532.

    Article  CAS  PubMed  Google Scholar 

  25. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001; 105: 369–377.

    Article  CAS  PubMed  Google Scholar 

  26. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 2000; 6: 1229–1234.

    Article  CAS  PubMed  Google Scholar 

  27. LaBarge MA, Blau HM . Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 2002; 111: 589–601.

    Article  CAS  PubMed  Google Scholar 

  28. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N et al. Bone marrow as a potential source of hepatic oval cells. Science 1999; 284: 1168–1170.

    Article  CAS  PubMed  Google Scholar 

  29. Weismann A . The continuity of the germ-plasm as the foundation of a theory of heredity. Fisher-Verlag: Jena, 1885.

    Google Scholar 

  30. Kucia M, Machalinski B, Ratajczak MZ . The developmental deposition of epiblast/germ cell-line derived cells in various organs as a hypothetical explanation of stem cell plasticity? Acta Neurobiol Exp 2006; 66: 331–341.

    Google Scholar 

  31. Donovan PJ . The germ cell – the mother of all stem cells. Int J Dev Biol 1998; 42: 1043–1050.

    CAS  PubMed  Google Scholar 

  32. Zwaka TP, Thomson JA . A germ cell origin of embryonic stem cells? Development 2005; 132: 227–233.

    Article  CAS  PubMed  Google Scholar 

  33. Evans MJ, Kaufman MH . Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154–156.

    Article  CAS  PubMed  Google Scholar 

  34. McLaren A . Development of primordial germ cells in the mouse. Andrologia 1992; 24: 243–247.

    Article  CAS  PubMed  Google Scholar 

  35. McLaren A . Primordial germ cells in the mouse. Dev Biol 2003; 262: 1–15.

    Article  CAS  PubMed  Google Scholar 

  36. Molyneaux K, Wylie C . Primordial germ cell migration. Int J Dev Biol 2004; 48: 537–544.

    Article  CAS  PubMed  Google Scholar 

  37. Martin GR . Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981; 78: 7634–7638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000; 227: 271–278.

    Article  CAS  PubMed  Google Scholar 

  39. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA et al. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 1995; 92: 7844–7848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jordan HE . The history of the primordial germ cells in the loggerhead turtle embryo. Proc Natl Acad Sci USA 1917; 3: 271–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Upadhyay S, Zamboni L . Ectopic germ cells: natural model for the study of germ cell sexual differentiation. Proc Natl Acad Sci USA 1982; 79: 6584–6588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Francavilla S, Zamboni L . Differentiation of mouse ectopic germinal cells in intra- and perigonadal locations. J Exp Zool 1985; 233: 101–109.

    Article  CAS  PubMed  Google Scholar 

  43. De Felici M, McLaren A . In vitro culture of mouse primordial germ cells. Exp Cell Res 1983; 144: 417–427.

    Article  CAS  PubMed  Google Scholar 

  44. Yamazaki Y, Mann MR, Lee SS, Marh J, McCarrey JR, Yanagimachi R et al. Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci USA 2003; 100: 12207–12212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Matsui Y, Zsebo K, Hogan BL . Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 1992; 70: 841–847.

    Article  CAS  PubMed  Google Scholar 

  46. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 1998; 95: 13726–13731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Turnpenny L, Brickwood S, Spalluto CM, Piper K, Cameron IT, Wilson DI et al. Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells. Stem Cells 2003; 21: 598–609.

    Article  PubMed  Google Scholar 

  48. Mann JR . Imprinting in the germ line. Stem Cells 2001; 19: 287–294.

    Article  CAS  PubMed  Google Scholar 

  49. Lee J, Inoue K, Ono R, Ogonuki N, Kohda T, Kaneko-Ishino T et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 2002; 129: 1807–1817.

    Article  CAS  PubMed  Google Scholar 

  50. Macchiarini P, Ostertag H . Uncommon primary mediastinal tumours. Lancet Oncol 2004; 5: 107–118.

    Article  PubMed  Google Scholar 

  51. Oosterhuis JW, Looijenga LH . Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer 2005; 5: 210–222.

    Article  CAS  PubMed  Google Scholar 

  52. Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200: 123–135.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 2005; 122: 303–315.

    Article  CAS  PubMed  Google Scholar 

  54. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R et al. Derivation of male germ cells from bone marrow stem cells. Lab Invest 2006; 86: 654–663.

    Article  CAS  PubMed  Google Scholar 

  55. Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ . Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 2005; 19: 1118–1127.

    Article  CAS  PubMed  Google Scholar 

  56. Friedenstein AJ, Piatetzky II S, Petrakova KV . Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16: 381–390.

    CAS  PubMed  Google Scholar 

  57. Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 1974; 2: 83–92.

    CAS  PubMed  Google Scholar 

  58. Lamoury FM, Croitoru-Lamoury J, Brew BJ . Undifferentiated mouse mesenchymal stem cells spontaneously express neural and stem cell markers Oct-4 and Rex-1. Cytotherapy 2006; 8: 228–242.

    Article  CAS  PubMed  Google Scholar 

  59. Zeng L, Rahrmann E, Hu Q, Lund T, Sandquist L, Felten M et al. Multipotent adult progenitor cells from swine bone marrow. Stem Cells 2006; 24: 2355–2366.

    Article  CAS  PubMed  Google Scholar 

  60. Gang EJ, Jeong JA, Hong SH, Hwang SH, Kim SW, Yang IH et al. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells 2004; 22: 617–624.

    Article  PubMed  Google Scholar 

  61. Brzoska E, Grabowska I, Hoser G, Streminska W, Wasilewska D, Machaj EK et al. Participation of stem cells from human cord blood in skeletal muscle regeneration of SCID mice. Exp Hematol 2006; 34: 1262–1270.

    Article  CAS  PubMed  Google Scholar 

  62. Di Campli C, Piscaglia AC, Pierelli L, Rutella S, Bonanno G, Alison MR et al. A human umbilical cord stem cell rescue therapy in a murine model of toxic liver injury. Dig Liver Dis 2004; 36: 603–613.

    Article  CAS  PubMed  Google Scholar 

  63. Kakinuma S, Tanaka Y, Chinzei R, Watanabe M, Shimizu-Saito K, Hara Y et al. Human umbilical cord blood as a source of transplantable hepatic progenitor cells. Stem Cells 2003; 21: 217–227.

    Article  PubMed  Google Scholar 

  64. Newsome PN, Johannessen I, Boyle S, Dalakas E, McAulay KA, Samuel K et al. Human cord blood-derived cells can differentiate into hepatocytes in the mouse liver with no evidence of cellular fusion. Gastroenterology 2003; 124: 1891–1900.

    Article  PubMed  Google Scholar 

  65. Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K . Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 2002; 115: 2131–2138.

    Article  CAS  PubMed  Google Scholar 

  66. Henning RJ, Abu-Ali H, Balis JU, Morgan MB, Willing AE, Sanberg PR . Human umbilical cord blood mononuclear cells for the treatment of acute myocardial infarction. Cell Transplant 2004; 13: 729–739.

    Article  PubMed  Google Scholar 

  67. Ma N, Stamm C, Kaminski A, Li W, Kleine HD, Muller-Hilke B et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res 2005; 66: 45–54.

    Article  CAS  PubMed  Google Scholar 

  68. Zeng F, Chen MJ, Baldwin DA, Gong ZJ, Yan JB, Qian H et al. Multiorgan engraftment and differentiation of human cord blood CD34+ Lin- cells in goats assessed by gene expression profiling. Proc Natl Acad Sci USA 2006; 103: 7801–7806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Carlin R, Davis D, Weiss M, Schultz B, Troyer D . Expression of early transcription factors Oct4, Sox2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 2006; 4: 8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Dyce PW, Wen L, Li J . In vitro germline potential of stem cells derived from fetal porcine skin. Nat Cell Biol 2006; 8: 384–390.

    Article  CAS  PubMed  Google Scholar 

  71. Danner S, Kajahn J, Geismann C, Klink E, Kruse C . Derivation of oocyte-like cells from a clonal pancreatic stem cell line. Mol Hum Reprod 2007; 13: 11–20.

    Article  CAS  PubMed  Google Scholar 

  72. Koso H, Ouchi Y, Tabata Y, Aoki Y, Satoh S, Arai K et al. SSEA-1 marks regionally restricted immature subpopulations of embryonic retinal progenitor cells that are regulated by the Wnt signaling pathway. Dev Biol 2006; 292: 265–276.

    Article  CAS  PubMed  Google Scholar 

  73. De Coppi P, Bartsch Jr G, Siddiqui MM, Xu T, Santos CC, Perin L et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25: 100–106.

    Article  CAS  PubMed  Google Scholar 

  74. Otto WR . Lung epithelial stem cells. J Pathol 2002; 197: 527–535.

    Article  CAS  PubMed  Google Scholar 

  75. Kucia M, Dawn B, Hunt G, Guo Y, Wysoczynski M, Majka M et al. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 2004; 95: 1191–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wojakowski W, Tendera M, Michalowska A, Majka M, Kucia M, Maslankiewicz K et al. Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 2004; 110: 3213–3220.

    Article  CAS  PubMed  Google Scholar 

  77. Kucia M, Zhang YP, Reca R, Wysoczynski M, Machalinski B, Majka M et al. Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 2006; 20: 18–28.

    Article  CAS  PubMed  Google Scholar 

  78. Palermo AT, Labarge MA, Doyonnas R, Pomerantz J, Blau HM . Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev Biol 2005; 279: 336–344.

    Article  CAS  PubMed  Google Scholar 

  79. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5: 434–438.

    Article  CAS  PubMed  Google Scholar 

  80. Li Y, Reca RG, Atmaca-Sonmez P, Ratajczak MZ, Ildstad ST, Kaplan HJ et al. Retinal pigment epithelium damage enhances expression of chemoattractants and migration of bone marrow-derived stem cells. Invest Ophthalmol Vis Sci 2006; 47: 1646–1652.

    Article  PubMed  Google Scholar 

  81. Gomperts BN, Belperio JA, Rao PN, Randell SH, Fishbein MC, Burdick MD et al. Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury. J Immunol 2006; 176: 1916–1927.

    Article  CAS  PubMed  Google Scholar 

  82. Eghbali-Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Khosla S . Circulating osteoblast-lineage cells in humans. N Engl J Med 2005; 352: 1959–1966.

    Article  CAS  PubMed  Google Scholar 

  83. Togel F, Isaac J, Hu Z, Weiss K, Westenfelder C . Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 2005; 67: 1772–1784.

    Article  PubMed  Google Scholar 

  84. Lemoli RM, Catani L, Talarico S, Loggi E, Gramenzi A, Baccarani U et al. Mobilization of bone marrow-derived hematopoietic and endothelial stem cells after orthotopic liver transplantation and liver resection. Stem Cells 2006; 24: 2817–2825.

    Article  CAS  PubMed  Google Scholar 

  85. Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 2004; 110: 1847–1854.

    Article  CAS  PubMed  Google Scholar 

  86. Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdorf D, Badel K et al. Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin's lymphoma. J Clin Oncol 2004; 22: 1095–1102.

    Article  CAS  PubMed  Google Scholar 

  87. Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J . Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow. Leukemia 2004; 18: 29–40.

    Article  CAS  PubMed  Google Scholar 

  88. Virchow R . Editorial Archive fuer pathologische. Anatomie und Physiologie fuer klinische Medizin 1855; 8: 23–54.

    Google Scholar 

  89. Ratajczak MZ, Kucia M, Dobrowolska H, Wanzeck J, Reca R, Ratajczak J . Emerging concept of cancer as a stem cell disorder. CEJB 2006; 4: 1–15.

    Google Scholar 

  90. Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J . The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 2006; 20: 1915–1924.

    Article  CAS  PubMed  Google Scholar 

  91. Rossant J, Papaioannou VE . The relationship between embryonic, embryonal carcinoma and embryo-derived stem cells. Cell Differ 1984; 15: 155–161.

    Article  CAS  PubMed  Google Scholar 

  92. Andrews PW, Matin MM, Bahrami AR, Damjanov I, Gokhale P, Draper JS . Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans 2005; 33: 1526–1530.

    Article  CAS  PubMed  Google Scholar 

  93. Barr FG . Molecular genetics and pathogenesis of rhabdomyosarcoma. J Pediatr Hematol Oncol 1997; 19: 483–491.

    Article  CAS  PubMed  Google Scholar 

  94. Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H et al. Gastric cancer originating from bone marrow-derived cells. Science 2004; 306: 1568–1571.

    Article  CAS  PubMed  Google Scholar 

  95. Liu C, Chen Z, Chen Z, Zhang T, Lu Y . Multiple tumor types may originate from bone marrow-derived cells. Neoplasia 2006; 8: 716–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant R01 CA106281-01 to MZR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Z Ratajczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratajczak, M., Machalinski, B., Wojakowski, W. et al. A hypothesis for an embryonic origin of pluripotent Oct-4+ stem cells in adult bone marrow and other tissues. Leukemia 21, 860–867 (2007). https://doi.org/10.1038/sj.leu.2404630

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404630

Keywords

This article is cited by

Search

Quick links