Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Disorders

The anticancer drug imatinib induces cellular autophagy

Abstract

The tyrosine kinase inhibitor imatinib (Gleevec, Novartis Pharmaceuticals Corporation; Basel, Switzerland) is a powerful drug for treatment of chronic myelogenous leukemia (CML) and other malignancies. It selectively targets various tyrosine kinases, thereby leading to growth arrest of respective cancer cells. Given its wide application, it is of high importance to know all related underlying molecular mechanisms. We had previously found that imatinib increases the cellular clearance of intracellular protein aggregates by targeting the abl pathway and thereby upregulating lysosomal activity. Here, we describe that imatinib dose dependently activates the cellular autophagy machinery in mammalian cells, independently of tissue type, species origin or immortalization status of cells. Autophagy is an archetypical cellular degradation mechanism implicated in many physiological and pathophysiological conditions. Our data link for the first time the process of autophagy with the mode of action of imatinib. Induction of autophagy might represent an additional mechanism of imatinib to induce growth arrest, promote apoptosis in cancer cells and eventually even promote tumour regression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 3
Figure 2
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  CAS  PubMed  Google Scholar 

  2. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Druker BJ et al. Inhibition of the Abl protein-tyrosine kinase in vitro by a 2-phenylaminopyrimidine derivative. Cancer Res 1996; 56: 1000–1004.

    Google Scholar 

  3. Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ . Inhibition of c-kit receptor tyrosine kinase activity by STI571, a selective tyrosine kinase inhibitor. Blood 2000; 96: 925–932.

    CAS  PubMed  Google Scholar 

  4. Dewar AL, Zannettino AC, Hughes TP, Lyons AB . Inhibition of c-fms by imatinib: expanding the spectrum of treatment. Cell Cycle 2005; 4: 851–853.

    Article  CAS  PubMed  Google Scholar 

  5. Sawyers CL . Chronic myeloid leukaemia. N Engl J Med 1999; 340: 1330–1340.

    Article  CAS  PubMed  Google Scholar 

  6. Kurzrock R, Kantarjian HM, Drucker BJ, Talpaz M . Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. Ann Int Med 2003; 138: 819–830.

    Article  CAS  PubMed  Google Scholar 

  7. Pendergast AM . The Abl family kinases: mechanisms of regulation and signalling. Adv Cancer Res 2002; 85: 51–100.

    Article  CAS  PubMed  Google Scholar 

  8. Kilic T, Alberta J, Zdunek PR, Acar M, Iannarelli P, O’Reilly T et al. Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 2000; 60: 5143–5150.

    CAS  PubMed  Google Scholar 

  9. Russell J, Brady K, Burgan W, Cerra MA, Oswald KA, Camphausen K et al. STI571-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity. Cancer Res 2003; 63: 7377–7383.

    CAS  PubMed  Google Scholar 

  10. Netzer WJ, Dou F, Cai D, Veach D, Jean S, Li Y et al. Gleevec inhibits beta-amyloid production but not Notch cleavage. Proc Natl Acad Sci USA 2003; 100: 12444–12449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ertmer A, Gilch S, Yun SW, Flechsig E, Klebl B, Stein-Gerlach M et al. The tyrosine kinase inhibitor STI571 induces cellular clearance of PrPSc in prion-infected cells. J Biol Chem 2004; 279: 41918–41927.

    Article  CAS  PubMed  Google Scholar 

  12. Kabeya Y, Mizushima N, Ueno T, Yamamotot A, Kirisako T, Noda T et al. LC3, a mammalian homologue of yeast Apg8p is localized in autophagosome membranes after processing. EMBO J 2000; 19: 5720–5728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ito S, Karnovsky MJ . Formaledhyde-glutaraldehyde fixatives containing trinitro compounds. J Cell Biol 1968; 39: 168a–169a.

    Google Scholar 

  14. Blommaart EF, Luiken JJ, Meijer AJ . Autophagic proteolysis: control and specificity. Histochem J 1997; 29: 365–385.

    Article  CAS  PubMed  Google Scholar 

  15. Seglen PO, Bohley P . Autophagy and other vacuolar protein degradation mechanisms. Experientia 1992; 48: 158–172.

    Article  CAS  PubMed  Google Scholar 

  16. Hoyvik H, Gordon PB, Seglen PO . Use of a hydrolysable probe, [14C]lactose, to distinguish between pre-lysosomal and lysosomal steps in the autophagic pathway. Exp Cell Res 1986; 166: 1–14.

    Article  CAS  PubMed  Google Scholar 

  17. Raught B, Gingras AC, Sonenberg N . The target of rapamycin (TOR) proteins. Proc Natl Acad Sci USA 2001; 98: 7037–7044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu JC, Lokker NA, Hollenbach S, Apatira M, Li J, Betz A et al. Efficacy of the novel selective platelet derived growth factor receptor antagonist CT52923 on cellular proliferation, migration, and suppression of neointima following vascular injury. J Pharmacol Exp Ther 2001; 298: 1172–1178.

    CAS  PubMed  Google Scholar 

  19. Sun X, Layton JF, Elefanty A, Lieschke GJ . Comparison of effects of the tyrosine kinase inhibitors AG957, AG490 and STI571 on BCR-ABL-expressing cells, demonstrating synergy between AG490 and STI571. Blood 2001; 97: 2008–2015.

    Article  CAS  PubMed  Google Scholar 

  20. Klionsky DJ, Ohsumi Y . Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol 1999; 15: 1–32.

    Article  CAS  PubMed  Google Scholar 

  21. Yoshimori T . Autophagy : a regulated bulk degradation process inside cells. Biochem Biophys Res Commun 2004; 313: 453–458.

    Article  CAS  PubMed  Google Scholar 

  22. Otsuka H, Moskowitz M . Differences in the rates of protein degradation in untransformed and transformed cell lines. Exp Cell Res 1978; 112: 127–135.

    Article  CAS  PubMed  Google Scholar 

  23. Schwarze PE, Seglen PO . Reduced autophagic activity, improved protein balance and enhanced in vitro survival of hepatocytes isolated from carcinogen-treated rats. Exp Cell Res 1985; 157: 15–28.

    Article  CAS  PubMed  Google Scholar 

  24. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112: 1809–1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402: 672–676.

    Article  CAS  PubMed  Google Scholar 

  26. Cuervo AM . Autophagy: in sickness and in health. Trends Cell biol 2004; 14: 70–77.

    Article  PubMed  Google Scholar 

  27. Kerr JF, Wyllie AH, Currie AR . Apoptosis: a baxic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Syntichaki P, Tavernakis N . Death by necrosis. Uncontrollable catastrophe, or is there order behind the chaos? EMBO Rep 2002; 3: 604–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, Sikorska M et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 1996; 17: 1595–1607.

    Article  CAS  PubMed  Google Scholar 

  30. Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S . Role of autophagy in temozolomide-inducedcytotoxicity for malignant glioma cells. Cell Death Differ 2004; 11: 448–457.

    Article  CAS  PubMed  Google Scholar 

  31. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 2001; 61: 439–444.

    CAS  PubMed  Google Scholar 

  32. Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y . Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol 2005; 26: 1401–1410.

    CAS  PubMed  Google Scholar 

  33. Yao KC, Komata T, Kondo Y, Kanzawa T, Kondo S, Germano IM . Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg 2003; 98: 378–384.

    Article  CAS  PubMed  Google Scholar 

  34. Shao Y, Gao Z, Marks PA, Jiang X . Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 2004; 101: 18030–18035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Komata T, Kanzawa T, Nashimoto T, Aoki H, Endo S, Nameta M et al. Mild heat shock induces autophagic growth arrest, but not apoptosis in U251-MG and U87-MG human malignant glioma cells. J Neurooncol 2004; 68: 101–111.

    Article  PubMed  Google Scholar 

  36. Kanzawa T, Kondo Y, Ito H, Kondo S, Germano I . Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 2003; 63: 2103–2108.

    CAS  PubMed  Google Scholar 

  37. Kanzawa T, Zhang L, Xiao L, Germano IM, Kondo Y, Kondo S . Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 2005; 24: 980–991.

    Article  CAS  PubMed  Google Scholar 

  38. Opipari Jr AW, Tan L, Boitani AE, Sorenson DR, Aurora A, Liu JR . Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res 2004; 64: 696–703.

    Article  CAS  PubMed  Google Scholar 

  39. Ellington AA, Berhow M, Singletary KW . Induction of macroautophagy in human colon cancer cells by soybean B-group triterpenoid saponins. Carcinogenesis 2005; 26: 159–167.

    Article  CAS  PubMed  Google Scholar 

  40. Takeuchi H, Kondo Y, Fujiwara K, Kanzawa T, Aoki H, Mills GB et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-phosphate kinase/protein kinase B inhibitors. Cancer Res 2005; 65: 3336–3346.

    Article  CAS  PubMed  Google Scholar 

  41. Ogier-Denis E, Codogno P . Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 2003; 1603: 113–128.

    CAS  PubMed  Google Scholar 

  42. Gozuacik D, Kimchi A . Autophagy as a cell death and tumor suppressor mechanism. Oncogene 2004; 23: 2891–2906.

    Article  CAS  PubMed  Google Scholar 

  43. Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Muller-Brusselbach S et al. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 2005; 19: 1774–1782.

    Article  CAS  PubMed  Google Scholar 

  44. Tsurutani J, West KA, Sayyah J, Gills JJ, Dennis PA . Inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway but not the MEK/ERK pathway attenuates laminin-mediated small cell lung cancer cellular survival and resistance to imatinib mesylate or chemotherapy. Cancer Res 2005; 65: 8423–8432.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Max Nunziante for helpful discussions and critically reading of the manuscript. This work was supported by the SFB-596 (project A8), FORPRION grant number LMU 5* and the DFG (SCHA 594/3-4), and was performed within the framework of the EU FP6 Network of Excellence Neuroprion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H M Schätzl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ertmer, A., Huber, V., Gilch, S. et al. The anticancer drug imatinib induces cellular autophagy. Leukemia 21, 936–942 (2007). https://doi.org/10.1038/sj.leu.2404606

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404606

Keywords

This article is cited by

Search

Quick links