Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Leukemia targeting ligands isolated from phage display peptide libraries

Abstract

Ligands specifically binding to leukemia cells may be used for drug targeting, resulting in more effective treatment with less side effects. Little is known about receptors specifically expressed on acute myeloid leukemia (AML) cells or ligands thereof. We selected random phage display peptide libraries on Kasumi-1 AML cells. A peptide with the sequence CPLDIDFYC was enriched. Phage displaying this peptide strongly bound to Kasumi-1 and SKNO-1 cells and binding could be inhibited by the cognate peptide. Both, Kasumi-1 and SKNO-1 cells carry the chromosomal translocation t(8;21), leading to aberrant expression of the fusion protein AML1/ETO. CPLDIDFYC also strongly and specifically bound primary AML1/ETO-positive AML blasts as well as U-937 cells with forced AML1/ETO expression, suggesting that the CPLDIDFYC receptor may be upregulated upon AML1/ETO expression. Gene expression profiling comparing a panel of CPLDIDFYC-binding and CPLDIDFYC-nonbinding cell lines identified a set of potential receptors for the CPLDIDFYC peptide. Further analysis suggested that α4β1 integrin (VLA-4) is the CPLDIDFYC receptor. Finally, we showed that the CPLDIDFYC-phage is internalized upon receptor binding, suggesting that the CPLDIDFYC-receptor–ligand interaction may be exploitable for targeting drugs or gene therapy vectors to leukemia cells carrying the suitable receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Stone RM, O'Donnell MR, Sekeres MA . Acute myeloid leukemia. Hematology (Am Soc Hematol Educ Program) 2004, 98–117.

    Article  Google Scholar 

  2. Tallman MS, Gilliland D, GRowe JM . Drug therapy for acute myeloid leukemia. Blood 2005; 106: 1154–1163.

    Article  CAS  PubMed  Google Scholar 

  3. Appelbaum FR, Rowe JM, Radich J, Dick JE . Acute myeloid leukemia. Hematology (Am Soc Hematol Educ Program) 2001, 62–86.

    Article  Google Scholar 

  4. Estey EH . Therapeutic options for acute myelogenous leukemia. Cancer 2001; 92: 1059–1073.

    Article  CAS  PubMed  Google Scholar 

  5. Baudard M, Beauchamp-Nicoud A, Delmer A, Rio B, Blanc C, Zittoun R et al. Has the prognosis of adult patients with acute myeloid leukemia improved over years? A single institution experience of 784 consecutive patients over a 16-year period. Leukemia 1999; 13: 1481–1490.

    Article  CAS  PubMed  Google Scholar 

  6. Karp JE, Lancet JE, Kaufmann SH, End DW, Wright JJ, Bol K et al. Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical-laboratory correlative trial. Blood 2001; 97: 3361–3369.

    Article  CAS  PubMed  Google Scholar 

  7. Kosugi H, Towatari M, Hatano S, Kitamura K, Kiyoi H, Kinoshita T et al. Histone deacetylase inhibitors are the potent inducer/enhancer of differentiation in acute myeloid leukemia: a new approach to anti-leukemia therapy. Leukemia 1999; 13: 1316–1324.

    Article  CAS  PubMed  Google Scholar 

  8. Yu C, Rahmani M, Conrad D, Subler M, Dent P, Grant S . The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood 2003; 102: 3765–3774.

    Article  CAS  PubMed  Google Scholar 

  9. Karp JE, Gojo I, Pili R, Gocke CD, Greer J, Guo CF et al. Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-beta-D-arabinofuranosylcytosine, mitoxantrone, and bevacizumab. Clin Cancer Res 2004; 10: 3577–3585.

    Article  CAS  PubMed  Google Scholar 

  10. Sievers EL . Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukaemia in first relapse. Expert OpinBiolo Thera 2001; 1: 893–901.

    Article  CAS  Google Scholar 

  11. Leopold LH, Berger MS, Cheng SC, Estey E . Comparative efficacy and safety of gemtuzumab ozogamicin monotherapy and high-dose cytarabine combination therapy in the treatment of patients with acute myeloid leukemia in first relapse. Blood 2000; 96: 2171.

    Google Scholar 

  12. van Der Velden VH, te Marvelde JG, Hoogeveen PG, Bernstein ID, Houtsmuller AB, Berger MS et al. Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood 2001; 97: 3197–3204.

    Article  CAS  PubMed  Google Scholar 

  13. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004; 350: 1605–1616.

    Article  CAS  PubMed  Google Scholar 

  14. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  15. Smith GP, Scott JK . Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol 1993; 217: 228–257.

    Article  CAS  PubMed  Google Scholar 

  16. Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E . Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. JClini Investig 1998; 102: 430–437.

    Article  CAS  Google Scholar 

  17. Giordano RJ, Cardo-Vila M, Lahdenranta J, Pasqualini R, Arap W . Biopanning and rapid analysis of selective interactive ligands. Nat Med 2001; 7: 1249–1253.

    Article  CAS  PubMed  Google Scholar 

  18. Trepel M, Arap W, Pasqualini R . In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr Opini Chemi Biol 2002; 6: 399–404.

    Article  CAS  Google Scholar 

  19. Pasqualini R, Ruoslahti E . Organ targeting in vivo using phage display peptide libraries. Nature 1996; 380: 364–366.

    Article  CAS  PubMed  Google Scholar 

  20. Arap W, Pasqualini R, Ruoslahti E . Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998; 279: 377–380.

    Article  CAS  PubMed  Google Scholar 

  21. Arap MA, Lahdenranta J, Mintz PJ, Hajitou A, Sarkis AS, Arap W et al. Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 2004; 6: 275–284.

    Article  CAS  PubMed  Google Scholar 

  22. Trepel M, Arap W, Pasqualini R . Modulation of the immune response by systemic targeting of antigens to lymph nodes. Cancer Res 2001; 61: 8110–8112.

    CAS  PubMed  Google Scholar 

  23. Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP, Heikkila P et al. Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 1999; 17: 768–774.

    Article  CAS  PubMed  Google Scholar 

  24. Arap W, Haedicke W, Bernasconi M, Kain R, Rajotte D, Krajewski S et al. Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci USA 2002; 99: 1527–1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Essler M, Ruoslahti E . Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc Natl Acad SciUSA 2002; 99: 2252–2257.

    Article  CAS  Google Scholar 

  26. Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslahti E . A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci USA 2002; 99: 7444–7449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Porkka K, Laakkonen P, Rajotte D, Hoffman J, Ruoslahti E . Bone marrow homing peptides from phage display libraries. Blood 1999; 94: 1107.

    Google Scholar 

  28. Laakkonen P, Porkka K, Hoffman JA, Ruoslahti E . A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med 2002; 8: 751–755.

    Article  CAS  PubMed  Google Scholar 

  29. Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W . Reversal of obesity by targeted ablation of adipose tissue. Nat Med 2004; 10: 625–632.

    Article  CAS  PubMed  Google Scholar 

  30. Kolonin MG, Pasqualini R, Arap W . Teratogenicity induced by targeting a placental immunoglobulin transporter. Proc Natl Acad Sci USA 2002; 99: 13055–13060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 1999; 5: 1032–1038.

    Article  CAS  PubMed  Google Scholar 

  32. Müller OJ, Kaul F, Weitzman MD, Pasqualini R, Arap W, Kleinschmidt JA et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 2003; 21: 1040–1046.

    Article  PubMed  Google Scholar 

  33. Li Y, Li H, Wang MN, Lu D, Bassi R, Wu Y et al. Suppression of leukemia expressing wild-type or ITD-mutant FLT3 receptor by a fully human anti-FLT3 neutralizing antibody. Blood 2004; 104: 1137–1144.

    Article  CAS  PubMed  Google Scholar 

  34. Williams B, Atkins A, Zhang H, Lu D, Jimenez X, Li H et al. Cell-based selection of internalizing fully human antagonistic antibodies directed against FLT3 for suppression of leukemia cell growth. Leukemia 2005; 19: 1432–1438.

    Article  CAS  PubMed  Google Scholar 

  35. Geuijen CA, Bijl N, Smit RC, Cox F, Throsby M, Visser TJ et al. A proteomic approach to tumour target identification using phage display, affinity purification and mass spectrometry. Eur J Cancer 2005; 41: 178–187.

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi S, Mok H, Parrott MB, Marini III FC, Andreeff M, Brenner MK et al. Selection of chronic lymphocytic leukemia binding peptides. Cancer Res 2003; 63: 5213–5217.

    CAS  PubMed  Google Scholar 

  37. Bakker AB, van den Oudenrijn S, Bakker AQ, Feller N, van Meijer M, Bia JA et al. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res 2004; 64: 8443–8450.

    Article  CAS  PubMed  Google Scholar 

  38. Matozaki S, Nakagawa T, Kawaguchi R, Aozaki R, Tsutsumi M, Murayama T et al. Establishment of a myeloid leukaemic cell line (SKNO-1) from a patient with t[8;21] who acquired monosomy 17 during disease progression. Br J Haematol 1995; 89: 805–811.

    Article  CAS  PubMed  Google Scholar 

  39. Koivunen E, Wang B, Ruoslahti E . Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. J Cell Biol 1994; 124: 373–380.

    Article  CAS  PubMed  Google Scholar 

  40. Fliegauf M, Stock M, Berg T, Lubbert M . Williams–Beuren syndrome critical region-5/non-T-cell activation linker: a novel target gene of AML1/ETO. Oncogene 2004; 23: 9070–9081.

    Article  CAS  PubMed  Google Scholar 

  41. Asou H, Tashiro S, Hamamoto K, Otsuji A, Kita K, Kamada N . Establishment of a human acute myeloid leukemia cell line (Kasumi-1) with 8;21 chromosome translocation. Blood 1991; 77: 2031–2036.

    CAS  PubMed  Google Scholar 

  42. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 2003; 9: 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  43. Calzada MJ, Zhou L, Sipes JM, Zhang J, Krutzsch HC, Iruela-Arispe ML et al. Alpha4beta1 integrin mediates selective endothelial cell responses to thrombospondins 1 and 2 in vitro and modulates angiogenesis in vivo. Circ Res 2004; 94: 462–470.

    Article  CAS  PubMed  Google Scholar 

  44. Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S et al. Identification of breakpoints in t[8;21] acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 1992; 80: 1825–1831.

    CAS  PubMed  Google Scholar 

  45. Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y et al. The t[8;21] translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J 1993; 12: 2715–2721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ahn MY, Huang G, Bae SC, Wee HJ, Kim WY, Ito Y . Negative regulation of granulocytic differentiation in the myeloid precursor cell line 32Dcl3 by ear-2, a mammalian homolog of Drosophila seven-up, and a chimeric leukemogenic gene, AML1/ETO. Proc Natl Acad Sci USA 1998; 95: 1812–1817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Westendorf JJ, Yamamoto CM, Lenny N, Downing JR, Selsted ME, Hiebert SW . The t[8;21] fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol 1998; 18: 322–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Burel SA, Harakawa N, Zhou L, Pabst T, Tenen DG, Zhang DE . Dichotomy of AML1-ETO functions: growth arrest versus block of differentiation. Mol Cell Biol 2001; 21: 5577–5590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Amann JM, Nip J, Strom DK, Lutterbach B, Harada H, Lenny N et al. ETO, a target of t[8;21] in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol Cell Biol 2001; 21: 6470–6483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rhoades KL, Hetherington CJ, Harakawa N, Yergeau DA, Zhou L, Liu LQ et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 2000; 96: 2108–2115.

    CAS  PubMed  Google Scholar 

  51. Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001; 98: 10398–10403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Downing JR . AML1/CBFbeta transcription complex: its role in normal hematopoiesis and leukemia. Leukemia 2001; 15: 664–665.

    Article  CAS  PubMed  Google Scholar 

  53. Jackson DY . Alpha 4 integrin antagonists. Curr Pharm Des 2002; 8: 1229–1253.

    Article  CAS  PubMed  Google Scholar 

  54. Mould AP, Humphries MJ . Identification of a novel recognition sequence for the integrin alpha 4 beta 1 in the COOH-terminal heparin-binding domain of fibronectin. EMBO J 1991; 10: 4089–4095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Elices MJ, Osborn L, Takada Y, Crouse C, Luhowskyj S, Hemler ME et al. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 1990; 60: 577–584.

    Article  CAS  PubMed  Google Scholar 

  56. Osborn L, Vassallo C, Browning BG, Tizard R, Haskard DO, Benjamin CD et al. Arrangement of domains, and amino acid residues required for binding of vascular cell adhesion molecule-1 to its counter-receptor VLA-4 (alpha 4 beta 1). J Cell Biol 1994; 124: 601–608.

    Article  CAS  PubMed  Google Scholar 

  57. Gazitt Y . Homing and mobilization of hematopoietic stem cells and hematopoietic cancer cells are mirror image processes, utilizing similar signaling pathways and occurring concurrently: circulating cancer cells constitute an ideal target for concurrent treatment with chemotherapy and antilineage-specific antibodies. Leukemia 2004; 18: 1–10.

    Article  CAS  PubMed  Google Scholar 

  58. Papayannopoulou T . Mechanisms of stem-/progenitor-cell mobilization: the anti-VLA-4 paradigm. Semin Hematol 2000; 37: 11–18.

    Article  CAS  PubMed  Google Scholar 

  59. Curnis F, Gasparri A, Sacchi A, Cattaneo A, Magni F, Corti A . Targeted delivery of IFNgamma to tumor vessels uncouples antitumor from counter-regulatory mechanisms. Cancer Res 2005; 65: 2906–2913.

    Article  CAS  PubMed  Google Scholar 

  60. Curnis F, Sacchi A, Borgna L, Magni F, Gasparri A, Corti A . Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat Biotechnol 2000; 18: 1185–1190.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Florian Otto, Roland Mertelsmann, Christoph Peters, for helpful discussions and critical reading of the manuscript, Drs Renata Pasqualini and Wadih Arap for peptide Stephen Nimer library reagents and helpful comments on this paper and Drs Stephen Nimer, Ursula Kapp, Jens Hasskarl, Ursula Elsässer-Beile, Hanno Glimm, Alexandros Spyridonidis, Uwe Martens for cell lines and Dr George Smith for the fUSE5 plasmid and K91kan bacteria. This work was supported by the Deutsche José Carreras Leukämie-Stiftung (Grants R03/08 to MT and R00/14 to ML).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Trepel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäger, S., Jahnke, A., Wilmes, T. et al. Leukemia targeting ligands isolated from phage display peptide libraries. Leukemia 21, 411–420 (2007). https://doi.org/10.1038/sj.leu.2404548

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404548

Keywords

This article is cited by

Search

Quick links