Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Spliced MLL fusions: a novel mechanism to generate functional chimeric MLL-MLLT1 transcripts in t(11;19)(q23;p13.3) leukemia

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Ayton PM, Cleary ML . Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695–5707.

    Article  CAS  PubMed  Google Scholar 

  2. Secker-Walker LM, Moorman AV, Bain BJ, Mehta AB . Secondary acute leukemia and myelodysplastic syndrome with 11q23 abnormalities. EU Concerted Action 11q23 Workshop. Leukemia 1998; 12: 840–844.

    Article  CAS  PubMed  Google Scholar 

  3. Meyer C, Schneider B, Jakob S, Strehl S, Attarbaschi A, Schnittger S et al. The MLL recombinome of acute leukemias. Leukemia 2006; 20: 777–784.

    Article  CAS  PubMed  Google Scholar 

  4. Daser A, Rabbitts TH . The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin Cancer Biol 2005; 15: 175–188.

    Article  CAS  PubMed  Google Scholar 

  5. Yamamoto K, Seto M, Komatsu H, Iida S, Akao Y, Kojima S et al. Two distinct portions of LTG19/ENL at 19p13 are involved in t(11;19) leukemia. Oncogene 1993; 8: 2617–2625.

    CAS  PubMed  Google Scholar 

  6. Horstmann M, Argyriou-Tirita A, Borkhardt A, Kabisch H, Kapaun P, Winkler K et al. MLL/ENL fusion in congenital acute lymphoblastic leukemia with a unique t(11;18;19). Cancer Genet Cytogenet 1996; 88: 103–109.

    Article  CAS  PubMed  Google Scholar 

  7. Moorman AV, Hagemeijer A, Charrin C, Rieder H, Secker-Walker LM . The translocations, t(11;19)(q23;p13.1) and t(11;19)(q23;p13.3): a cytogenetic and clinical profile of 53 patients. European 11q23 Workshop participants 1998; 12: 805–810.

    CAS  Google Scholar 

  8. Blanco JG, Dervieux T, Edick MJ, Mehta PK, Rubnitz JE, Shurtleff S et al. Molecular emergence of acute myeloid leukemia during treatment for acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2001; 98: 10338–10343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rubnitz JE, Camitta BM, Mahmoud H, Raimondi SC, Carroll AJ, Borowitz MJ et al. Childhood acute lymphoblastic leukemia with the MLL-ENL fusion and t(11;19)(q23;p13.3) translocation. J Clin Oncol 1999; 17: 191–196.

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura T, Alder H, Gu Y, Prasad R, Canaani O, Kamada N et al. Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs. Proc Natl Acad Sci USA 1993; 90: 4631–4635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rubnitz JE, Morrissey J, Savage PA, Cleary ML . ENL, the gene fused with HRX in t(11;19) leukemias, encodes a nuclear protein with transcriptional activation potential in lymphoid and myeloid cells. Blood 1994; 84: 1747–1752.

    CAS  PubMed  Google Scholar 

  12. Slany RK, Lavau C, Cleary ML . The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Mol Cell Biol 1998; 18: 122–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lavau C, Szilvassy SJ, Slany R, Cleary ML . Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J 1997; 16: 4226–4237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zeisig BB, Garcia-Cuellar MP, Winkler TH, Slany RK . The oncoprotein MLL-ENL disturbs hematopoietic lineage determination and transforms a biphenotypic lymphoid/myeloid cell. Oncogene 2003; 22: 1629–1637.

    Article  CAS  PubMed  Google Scholar 

  15. Forster A, Pannell R, Drynan LF, McCormack M, Collins EC, Daser A et al. Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer. Cancer Cell 2003; 3: 449–458.

    Article  CAS  PubMed  Google Scholar 

  16. Drynan LF, Pannell R, Forster A, Chan NM, Cano F, Daser A et al. Mll fusions generated by Cre-loxP-mediated de novo translocations can induce lineage reassignment in tumorigenesis. EMBO J 2005; 24: 3136–3146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Horton SJ, Grier DG, McGonigle GJ, Thompson A, Morrow M, De Silva I et al. Continuous MLL-ENL expression is necessary to establish a ‘Hox Code’ and maintain immortalization of hematopoietic progenitor cells. Cancer Res 2005; 65: 9245–9252.

    Article  CAS  PubMed  Google Scholar 

  18. Meyer C, Schneider B, Reichel M, Angermueller S, Strehl S, Schnittger S et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci USA 2005; 102: 449–454.

    Article  CAS  PubMed  Google Scholar 

  19. Reichel M, Gillert E, Nilson I, Siegler G, Greil J, Fey GH et al. Fine structure of translocation breakpoints in leukemic blasts with chromosomal translocation t(4;11): the DNA damage-repair model of translocation. Oncogene 1998; 17: 3035–3044.

    Article  CAS  PubMed  Google Scholar 

  20. DiMartino JF, Miller T, Ayton PM, Landewe T, Hess JL, Cleary ML et al. A carboxy-terminal domain of ELL is required and sufficient for immortalization of myeloid progenitors by MLL-ELL. Blood 2000; 96: 3887–3893.

    CAS  PubMed  Google Scholar 

  21. Schreiner S, Birke M, Garcia-Cuellar MP, Zilles O, Greil J, Slany RK . MLL-ENL causes a reversible and myc-dependent block of myelomonocytic cell differentiation. Cancer Res 2001; 61: 6480–6486.

    CAS  PubMed  Google Scholar 

  22. Löchner K, Siegler G, Führer M, Greil J, Beck JD, Fey GH et al. A specific deletion within the breakpoint cluster region of the ALL-1 gene is associated with acute lymphoblastic T-cell leukemias. Cancer Res 1996; 56: 2171–2177.

    PubMed  Google Scholar 

  23. Fair K, Anderson M, Bulanova E, Mi H, Tropschug M, Diaz MO . Protein interactions of the MLL PHD fingers modulate MLL target gene regulation in human cells. Mol Cell Biol 2001; 21: 3589–3597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chinwalla V, Chien A, Odero M, Neilly MB, Zeleznik-Le NJ, Rowley JD . A t(11;15) fuses MLL to two different genes, AF15q14 and a novel gene MPFYVE on chromosome 15. Oncogene 2003; 22: 1400–1410.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Marschalek.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, C., Burmeister, T., Strehl, S. et al. Spliced MLL fusions: a novel mechanism to generate functional chimeric MLL-MLLT1 transcripts in t(11;19)(q23;p13.3) leukemia. Leukemia 21, 588–590 (2007). https://doi.org/10.1038/sj.leu.2404542

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404542

This article is cited by

Search

Quick links