Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Minimal Residual Disease

Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting

Abstract

Minimal residual disease (MRD) diagnostics is used for treatment stratification in childhood acute lymphoblastic leukemia. We aimed to identify and solve potential problems in multicenter MRD studies to achieve and maintain consistent results between the AIEOP/BFM ALL-2000 MRD laboratories. As the dot-blot hybridization method was replaced by the real-time quantitative polymerase chain reaction (RQ-PCR) method during the treatment protocol, special attention was given to the comparison of MRD data obtained by both methods and to the reproducibility of RQ-PCR data. Evaluation of all key steps in molecular MRD diagnostics identified several pitfalls that resulted in discordant MRD results. In particular, guidelines for RQ-PCR data interpretation appeared to be crucial for obtaining concordant MRD results. The experimental variation of the RQ-PCR was generally less than three-fold, but logically became larger at low MRD levels below the reproducible sensitivity of the assay (<10−4). Finally, MRD data obtained by dot-blot hybridization were comparable to those obtained by RQ-PCR analysis (r2=0.74). In conclusion, MRD diagnostics using RQ-PCR analysis of immunoglobulin/T-cell receptor gene rearrangements is feasible in multicenter studies but requires standardization; particularly strict guidelines for interpretation of RQ-PCR data are required. We further recommend regular quality control for laboratories performing MRD diagnostics in international treatment protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Cave H, van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer–Childhood Leukemia Cooperative Group. N Engl J Med 1998; 339: 591–598.

    Article  CAS  Google Scholar 

  2. Coustan-Smith E, Sancho J, Hancock ML, Boyett JM, Behm FG, Raimondi SC et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000; 96: 2691–2696.

    CAS  Google Scholar 

  3. van Dongen JJM, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–1738.

    Article  CAS  Google Scholar 

  4. Panzer-Grumayer ER, Schneider M, Panzer S, Fasching K, Gadner H . Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 2000; 95: 790–794.

    CAS  Google Scholar 

  5. Knechtli CJ, Goulden NJ, Hancock JP, Grandage VL, Harris EL, Garland RJ et al. Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood 1998; 92: 4072–4079.

    CAS  Google Scholar 

  6. van der Velden VHJ, Joosten SA, Willemse MJ, van Wering ER, Lankester AW, van Dongen JJM et al. Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia 2001; 15: 1485–1487.

    Article  CAS  Google Scholar 

  7. Szczepanski T, Orfao A, van der Velden VHJ, San Miguel JF, van Dongen JJM . Minimal residual disease in leukaemia patients. Lancet Oncol 2001; 2: 409–417.

    Article  CAS  Google Scholar 

  8. Marshall GM, Haber M, Kwan E, Zhu L, Ferrara D, Xue C et al. Importance of minimal residual disease testing during the second year of therapy for children with acute lymphoblastic leukemia. J Clin Oncol 2003; 21: 704–709.

    Article  Google Scholar 

  9. Willemse MJ, Seriu T, Hettinger K, d’Aniello E, Hop WC, Panzer-Grumayer ER et al. Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood 2002; 99: 4386–4393.

    Article  CAS  Google Scholar 

  10. Szczepanski T, Flohr T, van der Velden VHJ, Bartram CR, van Dongen JJM . Molecular monitoring of residual disease using antigen receptor genes in childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2002; 15: 37–57.

    Article  CAS  Google Scholar 

  11. van der Velden VHJ, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJM . Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003; 17: 1013–1034.

    Article  CAS  Google Scholar 

  12. Verhagen OJ, Wijkhuijs AJ, van der Sluijs-Gelling AJ, Szczepanski T, van der Linden-Schrever BE, Pongers-Willemse MJ et al. Suitable DNA isolation method for the detection of minimal residual disease by PCR techniques. Leukemia 1999; 13: 1298–1299.

    Article  CAS  Google Scholar 

  13. Pongers-Willemse MJ, Seriu T, Stolz F, d’Aniello E, Gameiro P, Pisa P et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 110–118.

    Article  CAS  Google Scholar 

  14. Peham M, Panzer S, Fasching K, Haas OA, Fischer S, Marschalek R et al. Low frequency of clonotypic Ig and T-cell receptor gene rearrangements in t(4;11) infant acute lymphoblastic leukaemia and its implication for the detection of minimal residual disease. Br J Haematol 2002; 117: 315–321.

    Article  CAS  Google Scholar 

  15. Verhagen OJ, Willemse MJ, Breunis WB, Wijkhuijs AJ, Jacobs DC, Joosten SA et al. Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2000; 14: 1426–1435.

    Article  CAS  Google Scholar 

  16. van der Velden VHJ, Wijkhuijs JM, Jacobs DC, van Wering ER, van Dongen JJM . T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia 2002; 16: 1372–1380.

    Article  CAS  Google Scholar 

  17. van der Velden VHJ, Willemse MJ, van der Schoot CE, Hahlen K, van Wering ER, van Dongen JJM . Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 2002; 16: 928–936.

    Article  CAS  Google Scholar 

  18. Nakao M, Janssen JW, Flohr T, Bartram CR . Rapid and reliable quantification of minimal residual disease in acute lymphoblastic leukemia using rearranged immunoglobulin and T-cell receptor loci by LightCycler technology. Cancer Res 2000; 60: 3281–3289.

    CAS  Google Scholar 

  19. Beishuizen A, Verhoeven MA, Mol EJ, Breit TM, Wolvers-Tettero IL, van Dongen JJ . Detection of immunoglobulin heavy-chain gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia 1993; 7: 2045–2053.

    CAS  Google Scholar 

  20. Breit TM, Wolvers-Tettero IL, Beishuizen A, Verhoeven MA, van Wering ER, van Dongen JJ . Southern blot patterns, frequencies, and junctional diversity of T-cell receptor-delta gene rearrangements in acute lymphoblastic leukemia. Blood 1993; 82: 3063–3074.

    CAS  Google Scholar 

  21. van der Velden VH, Hoogeveen PG, Pieters R, van Dongen JJ . Impact of two independent bone marrow samples on minimal residual disease monitoring in childhood acute lymphoblastic leukaemia. Br J Haematol 2006; 133: 382–388.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Martin Zimmermann (Hannover, Germany) for advice on statistical issues and to Marieke Comans-Bitter for preparing the figures. We acknowledge the Kind-Phillip Stiftung, BMBF, Deutsche Krebshilfe, St Anna Kinderkrebsforschung, Fondazione Tettamanti, Fondazione Cariplo, Fondazione Città Della Speranza, Associazione Italiana per la Ricerca sul Cancro (AIRC), MIUR PRIN 2005 no. 2005069388_001, NH & MRC and Cancer Council (Australia) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J M van Dongen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Velden, V., Panzer-Grümayer, E., Cazzaniga, G. et al. Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia 21, 706–713 (2007). https://doi.org/10.1038/sj.leu.2404535

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404535

Keywords

This article is cited by

Search

Quick links