Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Unraveling the complex regulation of stem cells: implications for aging and cancer

Abstract

Substantial progress in embryonic and adult stem cell research in the past several years has yielded a wealth of information regarding the mechanisms regulating self-renewal and differentiation, two processes often used to define stem cells. Recent evidence suggests that epigenetic as well as genetic processes maintain stem cells in a pluripotent state as well as dictate their transition to more restricted stages of development. In this review, we discuss two emerging themes in stem cell biology, epigenetic control of gene expression and post-transcriptional regulation via microRNAs. We summarize how these regulatory mechanisms facilitate various aspects of normal stem cell biology and extend the discussion to their involvement in aging and tumorigeneisis, two biological phenomena intimately tied to stem cells. We speculate that aberrant epigenetic events and altered miRNA expression profiles in aged stem cell populations play important roles in carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Gurdon JB . The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 1962; 10: 622–640.

    CAS  Google Scholar 

  2. Gurdon JB, Uehlinger V . ‘Fertile’ intestine nuclei. Nature 1966; 210: 1240–1241.

    CAS  Google Scholar 

  3. Thomas ED, Lochte Jr HL, Cannon JH, Sahler OD, Ferrebee JW . Supralethal whole body irradiation and isologous marrow transplantation in man. J Clin Invest 1959; 38: 1709–1716.

    CAS  Google Scholar 

  4. Akashi K, He X, Chen J, Iwasaki H, Niu C, Steenhard B et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood 2003; 101: 383–389.

    CAS  Google Scholar 

  5. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR . A stem cell molecular signature. Science 2002; 298: 601–604.

    CAS  Google Scholar 

  6. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA . ‘Stemness’: transcriptional profiling of embryonic and adult stem cells. Science 2002; 298: 597–600.

    CAS  Google Scholar 

  7. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA 2005; 102: 9194–9199.

    CAS  Google Scholar 

  8. Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM et al. Chromatin signatures of pluripotent cell lines. Nat Cell Biol 2006; 8: 532–538.

    CAS  Google Scholar 

  9. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006; 441: 349–353.

    CAS  Google Scholar 

  10. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125: 301–313.

    CAS  Google Scholar 

  11. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  Google Scholar 

  12. Coleman J, Green PJ, Inouye M . The use of RNAs complementary to specific mRNAs to regulate the expression of individual bacterial genes. Cell 1984; 37: 429–436.

    CAS  Google Scholar 

  13. Chung YJ, Park BB, Kang YJ, Kim TM, Eaves CJ, Oh IH . Unique effects of Stat3 on the early phase of hematopoietic stem cell regeneration. Blood 2006; 108: 1208–1215.

    CAS  Google Scholar 

  14. Purton LE, Dworkin S, Olsen GH, Walkley CR, Fabb SA, Collins SJ et al. RARgamma is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation. J Exp Med 2006; 203: 1283–1293.

    CAS  Google Scholar 

  15. Roeder I, Glauche I . Towards an understanding of lineage specification in hematopoietic stem cells: a mathematical model for the interaction of transcription factors GATA-1 and PU.1. J Theor Biol 2006; 241: 852–865.

    CAS  Google Scholar 

  16. Yu X, Alder JK, Chun JH, Friedman AD, Heimfeld S, Cheng L et al. HES1 inhibits cycling of hematopoietic progenitor cells via DNA binding. Stem Cells 2006; 24: 876–888.

    CAS  Google Scholar 

  17. Chen CZ, Li L, Lodish HF, Bartel DP . MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83–86.

    CAS  Google Scholar 

  18. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 2005; 102: 18081–18086.

    CAS  Google Scholar 

  19. Monticelli S, Ansel KM, Xiao C, Socci ND, Krichevsky AM, Thai TH et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol 2005; 6: R71.

    Google Scholar 

  20. Harrison DE, Zhong RK, Jordan CT, Lemischka IR, Astle CM . Relative to adult marrow, fetal liver repopulates nearly five times more effectively long-term than short-term. Exp Hematol 1997; 25: 293–297.

    CAS  Google Scholar 

  21. Henckaerts E, Langer J, Snoeck H-W . Quantitative genetic variation in the hematopoietic stem cell and progenitor cell compartment and in lifespan are closely linked at multiple loci in BXD recombinant inbred mice. Blood 2004; 104: 374–379.

    CAS  Google Scholar 

  22. Kim M, Moon HB, Spangrude GJ . Major age-related changes of mouse hematopoietic stem/progenitor cells. Ann NY Acad Sci 2003; 996: 195–208.

    Google Scholar 

  23. Liang Y, Van Zant G, Szilvassy SJ . Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 2005; 106: 1479–1487.

    CAS  Google Scholar 

  24. Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL . The aging of hematopoietic stem cells. Nat Med 1996; 2: 1011–1016.

    CAS  Google Scholar 

  25. Chen J, Astle CM, Harrison DE . Genetic regulation of primitive hematopoietic stem cell senescence. Exp Hematol 2000; 28: 442–450.

    CAS  Google Scholar 

  26. de Haan G, Van Zant G . Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood 1999; 93: 3294–3301.

    CAS  Google Scholar 

  27. Geiger H, Rennebeck G, Van Zant G . Regulation of hematopoietic stem cell aging in vivo by a distinct genetic element. Proc Natl Acad Sci USA 2005; 102: 5102–5107.

    CAS  Google Scholar 

  28. Geiger H, True JM, de Haan G, Van Zant G . Age- and stage-specific regulation patterns in the hematopoietic stem cell hierarchy. Blood 2001; 98: 2966–2972.

    CAS  Google Scholar 

  29. Bennett-Baker PE, Wilkowski J, Burke DT . Age-associated activation of epigenetically repressed genes in the mouse. Genetics 2003; 165: 2055–2062.

    CAS  Google Scholar 

  30. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005; 102: 10604–10609.

    CAS  Google Scholar 

  31. Issa JP . Age-related epigenetic changes and the immune system. Clin Immunol 2003; 109: 103–108.

    CAS  Google Scholar 

  32. Jones PA, Baylin SB . The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3: 415–428.

    CAS  Google Scholar 

  33. Feinberg AP, Ohlsson R, Henikoff S . The epigenetic progenitor origin of human cancer. Nat Rev Genet 2006; 7: 21–33.

    CAS  Google Scholar 

  34. Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H . Stem cell division is regulated by the microRNA pathway. Nature 2005; 435: 974–978.

    CAS  Google Scholar 

  35. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 2005; 19: 489–501.

    CAS  Google Scholar 

  36. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    CAS  Google Scholar 

  37. Hammond SM . MicroRNAs as oncogenes. Curr Opin Genet Dev 2006; 16: 4–9.

    CAS  Google Scholar 

  38. Li E . Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002; 3: 662–673.

    CAS  Google Scholar 

  39. Bandyopadhyay D, Medrano EE . The emerging role of epigenetics in cellular and organismal aging. Exp Gerontol 2003; 38: 1299–1307.

    CAS  Google Scholar 

  40. Jenuwein T, Allis CD . Translating the histone code. Science 2001; 293: 1074–1080.

    CAS  Google Scholar 

  41. Mahmoudi T, Verrijzer CP . Chromatin silencing and activation by Polycomb and trithorax group proteins. Oncogene 2001; 20: 3055–3066.

    CAS  Google Scholar 

  42. Jones PA, Laird PW . Cancer epigenetics comes of age. Nat Genet 1999; 21: 163–167.

    CAS  Google Scholar 

  43. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998; 19: 187–191.

    CAS  Google Scholar 

  44. Nan X, Cross S, Bird A . Gene silencing by methyl-CpG-binding proteins. Novartis Found Symp 1998; 214: 6–16; discussion-21, 46–50.

    CAS  Google Scholar 

  45. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393: 386–389.

    CAS  Google Scholar 

  46. Kamminga LM, Bystrykh LV, de Boer A, Houwer S, Douma J, Weersing E et al. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 2006; 107: 2170–2179.

    CAS  Google Scholar 

  47. Lessard J, Sauvageau G . Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003; 423: 255–260.

    CAS  Google Scholar 

  48. Lessard J, Sauvageau G . Polycomb group genes as epigenetic regulators of normal and leukemic hemopoiesis. Exp Hematol 2003; 31: 567–585.

    CAS  Google Scholar 

  49. Denell RE, Frederick RD . Homoeosis in Drosophila: a description of the Polycomb lethal syndrome. Dev Biol 1983; 97: 34–47.

    CAS  Google Scholar 

  50. Lewis EB . A gene complex controlling segmentation in Drosophila. Nature 1978; 276: 565–570.

    CAS  Google Scholar 

  51. Pirrotta V . Polycombing the genome: PcG, trxG, and chromatin silencing. Cell 1998; 93: 333–336.

    CAS  Google Scholar 

  52. Ringrose L, Paro R . Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 2004; 38: 413–443.

    CAS  Google Scholar 

  53. Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 2004; 18: 1592–1605.

    CAS  Google Scholar 

  54. Lund AH, van Lohuizen M . Polycomb complexes and silencing mechanisms. Curr Opin Cell Biol 2004; 16: 239–246.

    CAS  Google Scholar 

  55. Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V . Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 2002; 111: 185–196.

    CAS  Google Scholar 

  56. Shao Z, Raible F, Mollaaghababa R, Guyon JR, Wu CT, Bender W et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 1999; 98: 37–46.

    CAS  Google Scholar 

  57. Lessard J, Baban S, Sauvageau G . Stage-specific expression of polycomb group genes in human bone marrow cells. Blood 1998; 91: 1216–1224.

    CAS  Google Scholar 

  58. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423: 302–305.

    CAS  Google Scholar 

  59. Haupt Y, Bath ML, Harris AW, Adams JM . bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene 1993; 8: 3161–3164.

    CAS  Google Scholar 

  60. Sharpless NE, DePinho RA . The INK4A/ARF locus and its two gene products. Curr Opin Genet Dev 1999; 9: 22–30.

    CAS  Google Scholar 

  61. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M . The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999; 397: 164–168.

    CAS  Google Scholar 

  62. Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M . Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 1999; 13: 2678–2690.

    CAS  Google Scholar 

  63. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    CAS  Google Scholar 

  64. Pardal R, Clarke MF, Morrison SJ . Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003; 3: 895–902.

    CAS  Google Scholar 

  65. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    CAS  Google Scholar 

  66. Itahana K, Zou Y, Itahana Y, Martinez JL, Beausejour C, Jacobs JJ et al. Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol 2003; 23: 389–401.

    CAS  Google Scholar 

  67. Pardal R, Molofsky AV, He S, Morrison SJ . Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb Symp Quant Biol 2005; 70: 177–185.

    CAS  Google Scholar 

  68. Lessard J, Schumacher A, Thorsteinsdottir U, van Lohuizen M, Magnuson T, Sauvageau G . Functional antagonism of the Polycomb-Group genes eed and Bmi1 in hemopoietic cell proliferation. Genes Dev 1999; 13: 2691–2703.

    CAS  Google Scholar 

  69. Kajiume T, Ninomiya Y, Ishihara H, Kanno R, Kanno M . Polycomb group gene mel-18 modulates the self-renewal activity and cell cycle status of hematopoietic stem cells. Exp Hematol 2004; 32: 571–578.

    CAS  Google Scholar 

  70. Ohta H, Sawada A, Kim JY, Tokimasa S, Nishiguchi S, Humphries RK et al. Polycomb group gene rae28 is required for sustaining activity of hematopoietic stem cells. J Exp Med 2002; 195: 759–770.

    CAS  Google Scholar 

  71. Singhal RP, Mays-Hoopes LL, Eichhorn GL . DNA methylation in aging of mice. Mech Ageing Dev 1987; 41: 199–210.

    CAS  Google Scholar 

  72. Wilson VL, Smith RA, Ma S, Cutler RG . Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 1987; 262: 9948–9951.

    CAS  Google Scholar 

  73. Zin'kovskaia GG, Berdyshev GD, Vaniushin BF . Tissue-specific decrease and change in the character of DNA methylation in cattle with aging]. Biokhimiia 1978; 43: 1883–1892.

    CAS  Google Scholar 

  74. Feinberg AP, Vogelstein B . Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983; 301: 89–92.

    CAS  Google Scholar 

  75. Bell DR, Van Zant G . Stem cells, aging, and cancer: inevitabilities and outcomes. Oncogene 2004; 23: 7290–7296.

    CAS  Google Scholar 

  76. Campisi J . Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 2005; 120: 513–522.

    CAS  Google Scholar 

  77. Krtolica A, Campisi J . Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol 2002; 34: 1401–1414.

    CAS  Google Scholar 

  78. Chang S . A mouse model of Werner Syndrome: what can it tell us about aging and cancer? Int J Biochem Cell Biol 2005; 37: 991–999.

    CAS  Google Scholar 

  79. Furuichi Y . Premature aging and predisposition to cancers caused by mutations in RecQ family helicases. Ann NY Acad Sci 2001; 928: 121–131.

    CAS  Google Scholar 

  80. Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, Martin GM et al. The Werner syndrome protein is a DNA helicase. Nat Genet 1997; 17: 100–103.

    CAS  Google Scholar 

  81. Epstein CJ, Martin GM, Schultz AL, Motulsky AG . Werner's syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine (Baltimore) 1966; 45: 177–221.

    CAS  Google Scholar 

  82. Salk D . Werner's syndrome: a review of recent research with an analysis of connective tissue metabolism, growth control of cultured cells, and chromosomal aberrations. Hum Genet 1982; 62: 1–5.

    CAS  Google Scholar 

  83. Agrelo R, Cheng WH, Setien F, Ropero S, Espada J, Fraga MF et al. Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci USA 2006; 103: 8822–8827.

    CAS  Google Scholar 

  84. Wightman B, Ha I, Ruvkun G . Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75: 855–862.

    CAS  Google Scholar 

  85. Lee RC, Feinbaum RL, Ambros V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.

    CAS  Google Scholar 

  86. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403: 901–906.

    CAS  Google Scholar 

  87. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435: 839–843.

    CAS  Google Scholar 

  88. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833.

    CAS  Google Scholar 

  89. Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 2006; 8: 278–284.

    CAS  Google Scholar 

  90. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811.

    CAS  Google Scholar 

  91. Lee Y, Jeon K, Lee JT, Kim S, Kim VN . MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002; 21: 4663–4670.

    CAS  Google Scholar 

  92. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN . The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev 2004; 18: 3016–3027.

    CAS  Google Scholar 

  93. Hammond SM, Bernstein E, Beach D, Hannon GJ . An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000; 404: 293–296.

    CAS  Google Scholar 

  94. Mendell JT . MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 2005; 4: 1179–1184.

    CAS  Google Scholar 

  95. Wienholds E, Plasterk RH . MicroRNA function in animal development. FEBS Lett 2005; 579: 5911–5922.

    CAS  Google Scholar 

  96. Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G . Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 2005; 280: 9330–9335.

    CAS  Google Scholar 

  97. Wienholds E, Koudijs MJ, van Eeden FJ, Cuppen E, Plasterk RH . The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet 2003; 35: 217–218.

    CAS  Google Scholar 

  98. Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ . Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA 2005; 102: 12135–12140.

    CAS  Google Scholar 

  99. Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A, Rajewsky K . Aberrant T cell differentiation in the absence of Dicer. J Exp Med 2005; 202: 261–269.

    CAS  Google Scholar 

  100. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ et al. Dicer is essential for mouse development. Nat Genet 2003; 35: 215–217.

    CAS  Google Scholar 

  101. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY et al. Human embryonic stem cells express a unique set of microRNAs. Dev Biol 2004; 270: 488–498.

    CAS  Google Scholar 

  102. Houbaviy HB, Murray MF, Sharp PA . Embryonic stem cell-specific MicroRNAs. Dev Cell 2003; 5: 351–358.

    CAS  Google Scholar 

  103. Shivdasani RA . MicroRNAs: regulators of gene expression and cell differentiation. Blood 2006; 108: 3646–3653.

    CAS  Google Scholar 

  104. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101: 2999–3004.

    CAS  Google Scholar 

  105. Zhang B, Pan X, Cobb GP, Anderson TA . microRNAs as oncogenes and tumor suppressors. Dev Biol 2006, (in press).

  106. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    CAS  Google Scholar 

  107. Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31–q32 amplification in malignant lymphoma. Cancer Res 2004; 64: 3087–3095.

    CAS  Google Scholar 

  108. Tagawa H, Seto M . A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia 2005; 19: 2013–2016.

    CAS  Google Scholar 

  109. Caldas C, Brenton JD . Sizing up miRNAs as cancer genes. Nat Med 2005; 11: 712–714.

    CAS  Google Scholar 

  110. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    CAS  Google Scholar 

  111. Strauss WM, Chen C, Lee CT, Ridzon D . Nonrestrictive developmental regulation of microRNA gene expression. Mamm Genome 2006; 17: 833–840.

    CAS  Google Scholar 

  112. Kluiver J, Kroesen BJ, Poppema S, van den Berg A . The role of microRNAs in normal hematopoiesis and hematopoietic malignancies. Leukemia 2006; 20: 1931–1936.

    CAS  Google Scholar 

  113. Croce CM, Calin GA . miRNAs, cancer, and stem cell division. Cell 2005; 122: 6–7.

    CAS  Google Scholar 

  114. Ershler WB, Longo DL . Aging and cancer: issues of basic and clinical science. J Natl Cancer Inst 1997; 89: 1489–1497.

    CAS  Google Scholar 

  115. Januchowski R, Prokop J, Jagodzinski PP . Role of epigenetic DNA alterations in the pathogenesis of systemic lupus erythematosus. J Appl Genet 2004; 45: 237–248.

    Google Scholar 

  116. Ehrenhofer-Murray AE . Chromatin dynamics at DNA replication, transcription and repair. Eur J Biochem 2004; 271: 2335–2349.

    CAS  Google Scholar 

  117. Vignali M, Hassan AH, Neely KE, Workman JL . ATP-dependent chromatin-remodeling complexes. Mol Cell Biol 2000; 20: 1899–1910.

    CAS  Google Scholar 

  118. Bird A . DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16: 6–21.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the editorial assistance of Paula Thomason. Work in the authors' laboratories was supported by grants from the National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Van Zant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oakley, E., Van Zant, G. Unraveling the complex regulation of stem cells: implications for aging and cancer. Leukemia 21, 612–621 (2007). https://doi.org/10.1038/sj.leu.2404530

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404530

Keywords

This article is cited by

Search

Quick links