Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

A practical guide to defining high-risk myeloma for clinical trials, patient counseling and choice of therapy

Abstract

Clinical outcomes for multiple myeloma (MM) are highly heterogeneous and it is now clear that pivotal genetic events are the primary harbingers of such variation. These findings have broad implications for counseling, choice of therapy and the design and interpretation of clinical investigation. Indeed, as in acute leukemias and non-hodgkins lymphoma, we believe it is no longer acceptable to consider MM a single disease entity. As such, the accurate diagnosis of MM subtypes and the adoption of common criteria for the identification and stratification of MM patients has become critical. Herein, we provide a consensus high-risk definition and offer practical guidelines for the adoption of routine diagnostic testing. Although acknowledging that more refined classifications will continue to be developed, we propose that the definition of high-risk disease (any of the t(4;14), t(14;16), t(14;20), deletion 17q13, aneuploidy or deletion chromosome 13 by metaphase cytogenetics, or plasma cell labeling index >3.0) be adopted. This classification will identify most of the 25% of MM patients for whom current therapies are inadequate and for whom investigational regimens should be vigorously pursued. Conversely, the 75% of patients remaining have more favorable outcomes using existing – albeit non-curative – therapeutic options.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kyle RA, Rajkumar SV . Monoclonal gammopathies of undetermined significance. Best Pract Res Clin Haematol 2005; 18: 689–707.

    Article  CAS  PubMed  Google Scholar 

  2. Kyle RA, Rajkumar SV . Multiple myeloma. N Engl J Med 2004; 351: 1860–1873.

    Article  CAS  PubMed  Google Scholar 

  3. Dispenzieri A, Kyle RA . Multiple myeloma: clinical features and indications for therapy. Best Pract Res Clin Haematol 2005; 18: 553–568.

    Article  CAS  PubMed  Google Scholar 

  4. Avet-Loiseau H, Li JY, Morineau N, Facon T, Brigaudeau C, Harousseau JL et al. Monosomy 13 is associated with the transition of monoclonal gammopathy of undetermined significance to multiple myeloma. Intergroupe Francophone du Myelome. Blood 1999; 94: 2583–2589.

    Article  CAS  PubMed  Google Scholar 

  5. Fonseca R, Bailey RJ, Ahmann GJ, Rajkumar SV, Hoyer JD, Lust JA et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 2002; 100: 1417–1424.

    Article  CAS  PubMed  Google Scholar 

  6. Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002; 99: 1745–1757.

    Article  CAS  PubMed  Google Scholar 

  7. Barlogie B, Tricot G, Rasmussen E, Anaissie E, van Rhee F, Zangari M et al. Total therapy 2 without thalidomide in comparison with total therapy 1: Role of intensified induction and posttransplantation consolidation therapies. Blood 2006; 107: 2633–2638.

    Article  CAS  PubMed  Google Scholar 

  8. Richardson PG, Mitsiades CS, Hideshima T, Anderson KC . Novel biological therapies for the treatment of multiple myeloma. Best Pract Res Clin Haematol 2005; 18: 619–634.

    Article  CAS  PubMed  Google Scholar 

  9. Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Blade J et al. International staging system for multiple myeloma. J Clin Oncol 2005; 23: 3412–3420.

    Article  PubMed  Google Scholar 

  10. Jacobson JL, Hussein MA, Barlogie B, Durie BG, Crowley JJ . A new staging system for multiple myeloma patients based on the Southwest Oncology Group (SWOG) experience. Br J Haematol 2003; 122: 441–450.

    Article  PubMed  Google Scholar 

  11. Ong F, Hermans J, Noordijk EM, Kluin-Nelemans JC . Is the Durie and Salmon diagnostic classification system for plasma cell dyscrasias still the best choice? Application of three classification systems to a large population-based registry of paraproteinemia and multiple myeloma. Ann Hematol 1995; 70: 19–24.

    Article  CAS  PubMed  Google Scholar 

  12. Jimenez-Zepeda VH, Dominguez VJ . Plasma cell leukemia: a rare condition. Ann Hematol 2006; 85: 263–267.

    Article  PubMed  Google Scholar 

  13. Saccaro S, Fonseca R, Veillon DM, Cotelingam J, Nordberg ML, Bredeson C et al. Primary plasma cell leukemia: report of 17 new cases treated with autologous or allogeneic stem-cell transplantation and review of the literature. Am J Hematol 2005; 78: 288–294.

    Article  PubMed  Google Scholar 

  14. Clark WF, Stewart AK, Rock GA, Sternbach M, Sutton DM, Barrett BJ et al. Plasma exchange when myeloma presents as acute renal failure: a randomized, controlled trial. Ann Intern Med 2005; 143: 777–784.

    Article  PubMed  Google Scholar 

  15. Avet-Loiseau H, Li JY, Facon T, Brigaudeau C, Morineau N, Maloisel F et al. High incidence of translocations t(11;14)(q13;q32) and t(4;14)(p16;q32) in patients with plasma cell malignancies. Cancer Res 1998; 58: 5640–5645.

    CAS  PubMed  Google Scholar 

  16. Avet-Loiseau H, Garand R, Lode L, Harousseau JL, Bataille R . Translocation t(11;14)(q13;q32) is the hallmark of IgM, IgE, and nonsecretory multiple myeloma variants. Blood 2003; 101: 1570–1571.

    Article  CAS  PubMed  Google Scholar 

  17. Bergsagel PL, Kuehl WM . Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma. Immunol Rev 2003; 194: 96–104.

    Article  CAS  PubMed  Google Scholar 

  18. Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy Jr J . Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 2005; 106: 296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stewart AK, Fonseca R . Prognostic and therapeutic significance of myeloma genetics and gene expression profiling. J Clin Oncol 2005; 23: 6339–6344.

    Article  CAS  PubMed  Google Scholar 

  20. Shaughnessy Jr J, Zhan F, Barlogie B, Stewart AK . Gene expression profiling and multiple myeloma. Best Pract Res Clin Haematol 2005; 18: 537–552.

    Article  CAS  PubMed  Google Scholar 

  21. Chang H, Sloan S, Li D, Zhuang L, Yi QL, Chen CI et al. The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant. Br J Haematol 2004; 125: 64–68.

    Article  PubMed  Google Scholar 

  22. Chang H, Stewart AK, Qi XY, Li ZH, Yi QL, Trudel S . Immunohistochemistry accurately predicts FGFR3 aberrant expression and t(4;14) in multiple myeloma. Blood 2005; 106: 353–355.

    Article  CAS  PubMed  Google Scholar 

  23. Chang H, Qi XY, Stewart AK . t(11;14) does not predict long-term survival in myeloma. Leukemia 2005; 19: 1078–1079.

    Article  CAS  PubMed  Google Scholar 

  24. Chang H, Qi XY, Samiee S, Yi QL, Chen C, Trudel S et al. Genetic risk identifies multiple myeloma patients who do not benefit from autologous stem cell transplantation. Bone Marrow Transplant 2005; 36: 793–796.

    Article  CAS  PubMed  Google Scholar 

  25. Chang H, Sloan S, Li D, Keith Stewart A . Multiple myeloma involving central nervous system: high frequency of chromosome 17p13.1 (p53) deletions. Br J Haematol 2004; 127: 280–284.

    Article  CAS  PubMed  Google Scholar 

  26. Chang H, Qi C, Yi QL, Reece D, Stewart AK . p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood 2005; 105: 358–360.

    Article  CAS  PubMed  Google Scholar 

  27. Chang H, Bouman D, Boerkoel CF, Stewart AK, Squire JA . Frequent monoallelic loss of D13S319 in multiple myeloma patients shown by interphase fluorescence in situ hybridization. Leukemia 1999; 13: 105–109.

    Article  CAS  PubMed  Google Scholar 

  28. Gertz MA, Lacy MQ, Dispenzieri A, Greipp PR, Litzow MR, Henderson KJ et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and −17p13 in myeloma patients treated with high-dose therapy. Blood 2005; 106: 2837–2840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bergsagel PL, Kuehl WM . Chromosome translocations in multiple myeloma. Oncogene 2001; 20: 5611–5622.

    Article  CAS  PubMed  Google Scholar 

  30. Chng WJ, Van Wier SA, Ahmann GJ, Winkler JM, Jalal SM, Bergsagel PL et al. A validated FISH trisomy index demonstrates the hyperdiploid and non-hyperdiploid dichotomy in MGUS. Blood 2005; 106: 2156–2161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chng WJ, Winkler JM, Greipp PR, Jalal SM, Bergsagel PL, Chesi M et al. Ploidy status rarely changes in myeloma patients at disease progression. Leuk Res 2006; 30: 266–271.

    Article  CAS  PubMed  Google Scholar 

  32. Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 2004; 64: 1546–1558.

    Article  CAS  PubMed  Google Scholar 

  33. Shaughnessy J, Jacobson J, Sawyer J, McCoy J, Fassas A, Zhan F et al. Continuous absence of metaphase-defined cytogenetic abnormalities, especially of chromosome 13 and hypodiploidy, ensures long-term survival in multiple myeloma treated with Total Therapy I: interpretation in the context of global gene expression. Blood 2003; 101: 3849–3856.

    Article  CAS  PubMed  Google Scholar 

  34. Shaughnessy J, Barlogie B . Chromosome 13 deletion in myeloma. Curr Top Microbiol Immunol 1999; 246: 199–203.

    CAS  PubMed  Google Scholar 

  35. Hanamura I, Stewart JP, Huang Y, Zhan F, Santra M, Sawyer JR et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 2006; 108: 1724–1732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shaughnessy J . Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kip1 and an aggressive clinical course in multiple myeloma. Hematology 2005; 10 (Suppl 1): 117–126.

    Article  CAS  PubMed  Google Scholar 

  37. Kuehl WM, Brents LA, Chesi M, Huppi K, Bergsagel PL . Dysregulation of c-myc in multiple myeloma. Curr Top Microbiol Immunol 1997; 224: 277–282.

    CAS  PubMed  Google Scholar 

  38. Shaughnessy Jr JD, Barlogie B . Using genomics to identify high-risk myeloma after autologous stem cell transplantation. Biol Blood Marrow Transplant 2006; 12 (Suppl 1): 77–80.

    Article  CAS  PubMed  Google Scholar 

  39. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al. The molecular classification of multiple myeloma. Blood 2006; 108: 2020–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Agnelli L, Bicciato S, Mattioli M, Fabris S, Intini D, Verdelli D et al. Molecular classification of multiple myeloma: a distinct transcriptional profile characterizes patients expressing CCND1 and negative for 14q32 translocations. J Clin Oncol 2005; 23: 7296–7306.

    Article  CAS  PubMed  Google Scholar 

  41. Carrasco DR, Tonon G, Huang Y, Zhang Y, Sinha R, Feng B et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 2006; 9: 313–325.

    Article  CAS  PubMed  Google Scholar 

  42. Chesi M, Bergsagel PL, Brents LA, Smith CM, Gerhard DS, Kuehl WM . Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood 1996; 88: 674–681.

    Article  CAS  PubMed  Google Scholar 

  43. Shaughnessy Jr J, Gabrea A, Qi Y, Brents L, Zhan F, Tian E et al. Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 2001; 98: 217–223.

    Article  CAS  PubMed  Google Scholar 

  44. Fonseca R, Blood EA, Oken MM, Kyle RA, Dewald GW, Bailey RJ et al. Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients. Blood 2002; 99: 3735–3741.

    Article  CAS  PubMed  Google Scholar 

  45. Hoyer JD, Hanson CA, Fonseca R, Greipp PR, Dewald GW, Kurtin PJ . The (11;14)(q13;q32) translocation in multiple myeloma. A morphologic and immunohistochemical study. Am J Clin Pathol 2000; 113: 831–837.

    Article  CAS  PubMed  Google Scholar 

  46. Avet-Loiseau H, Attal M, Moreau P, Charbonnel C, Garban F, Harousseau J et al. A comprehensive analysis of cytogenetic abnormalities in myeloma: results of the FISH analysis of 1000 patients enrolled in the IFM99 trials. session type: oral session. Blood 2005; 106: 622.

    Article  Google Scholar 

  47. Fonseca R, Hoyer JD, Aguayo P, Jalal SM, Ahmann GJ, Rajkumar SV et al. Clinical significance of the translocation (11;14)(q13;q32) in multiple myeloma. Leuk Lymphoma 1999; 35: 599–605.

    Article  CAS  PubMed  Google Scholar 

  48. Wuilleme S, Robillard N, Lode L, Magrangeas F, Beris H, Harousseau JL et al. Ploidy, as detected by fluorescence in situ hybridization, defines different subgroups in multiple myeloma. Leukemia 2005; 19: 275–278.

    Article  CAS  PubMed  Google Scholar 

  49. Chng WJ, Van Wier SA, Ahmann GJ, Winkler JM, Jalal SM, Bergsagel PL et al. A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood 2005; 106: 2156–2161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Debes-Marun CS, Dewald GW, Bryant S, Picken E, Santana-Davila R, Gonzalez-Paz N et al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia 2003; 17: 427–436.

    Article  CAS  PubMed  Google Scholar 

  51. Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C . Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 2001; 98: 2229–2238.

    Article  CAS  PubMed  Google Scholar 

  52. Garcia-Sanz R, Orfao A, Gonzalez M, Moro MJ, Hernandez JM, Ortega F et al. Prognostic implications of DNA aneuploidy in 156 untreated multiple myeloma patients. Castelano-Leones (Spain) cooperative group for the study of monoclonal gammopathies. Br J Haematol 1995; 90: 106–112.

    Article  CAS  PubMed  Google Scholar 

  53. Zhan F, Tian E, Bumm K, Smith R, Barlogie B, Shaughnessy Jr J . Gene expression profiling of human plasma cell differentiation and classification of multiple myeloma based on similarities to distinct stages of late-stage B-cell development. Blood 2003; 101: 1128–1140.

    Article  CAS  PubMed  Google Scholar 

  54. Chng WJ, Santana-Davila R, Van Wier SA, Ahmann GJ, Jalal SM, Bergsagel PL et al. Prognostic factors for hyperdiploid-myeloma: effects of chromosome 13 deletions and IgH translocations. Leukemia 2006; 20: 807–813.

    Article  CAS  PubMed  Google Scholar 

  55. Fonseca R, Oken MM, Greipp PR . The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal gammopathy of undetermined significance. Blood 2001; 98: 1271–1272.

    Article  CAS  PubMed  Google Scholar 

  56. Fonseca R, Oken MM, Harrington D, Bailey RJ, Van Wier SA, Henderson KJ et al. Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy. Leukemia 2001; 15: 981–986.

    Article  CAS  PubMed  Google Scholar 

  57. Jaksic W, Trudel S, Chang H, Trieu Y, Qi X, Mikhael J et al. Clinical outcomes in t(4;14) multiple myeloma: a chemotherapy-sensitive disease characterized by rapid relapse and alkylating agent resistance. J Clin Oncol 2005; 23: 7069–7073.

    Article  CAS  PubMed  Google Scholar 

  58. Hurt EM, Wiestner A, Rosenwald A, Shaffer AL, Campo E, Grogan T et al. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 2004; 5: 191–199.

    Article  CAS  PubMed  Google Scholar 

  59. Chesi M, Kuehl WM, Bergsagel PL . Recurrent immunoglobulin gene translocations identify distinct molecular subtypes of myeloma. Ann Oncol 2000; 11 (Suppl 1): 131–135.

    Article  PubMed  Google Scholar 

  60. Chesi M, Bergsagel PL, Shonukan OO, Martelli ML, Brents LA, Chen T et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 1998; 91: 4457–4463.

    Article  CAS  PubMed  Google Scholar 

  61. Rasmussen T, Knudsen LM, Dahl IM, Johnsen HE . C-MAF oncogene dysregulation in multiple myeloma: frequency and biological relevance. Leuk Lymphoma 2003; 44: 1761–1766.

    Article  CAS  PubMed  Google Scholar 

  62. Fonseca R, Debes-Marun CS, Picken EB, Dewald GW, Bryant SC, Winkler JM et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood 2003; 102: 2562–2567.

    Article  CAS  PubMed  Google Scholar 

  63. Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003; 101: 4569–4575.

    Article  CAS  PubMed  Google Scholar 

  64. Chang H, Qi XY, Samiee S, Yi QL, Chen C, Trudel S et al. Genetic risk identifies multiple myeloma patients who do not benefit from autologous stem cell transplantation. Bone Marrow Transplant 2005; 36: 793–796.

    Article  CAS  PubMed  Google Scholar 

  65. Shaughnessy Jr J, Tian E, Sawyer J, McCoy J, Tricot G, Jacobson J et al. Prognostic impact of cytogenetic and interphase fluorescence in situ hybridization-defined chromosome 13 deletion in multiple myeloma: early results of total therapy II. Br J Haematol 2003; 120: 44–52.

    Article  PubMed  Google Scholar 

  66. Fassas AB, Spencer T, Sawyer J, Zangari M, Lee CK, Anaissie E et al. Both hypodiploidy and deletion of chromosome 13 independently confer poor prognosis in multiple myeloma. Br J Haematol 2002; 118: 1041–1047.

    Article  CAS  PubMed  Google Scholar 

  67. Sawyer JR, Waldron JA, Jagannath S, Barlogie B . Cytogenetic findings in 200 patients with multiple myeloma. Cancer Genet Cytogenet 1995; 82: 41–49.

    Article  CAS  PubMed  Google Scholar 

  68. Tricot G, Sawyer JR, Jagannath S, Desikan KR, Siegel D, Naucke S et al. Unique role of cytogenetics in the prognosis of patients with myeloma receiving high-dose therapy and autotransplants. J Clin Oncol 1997; 15: 2659–2666.

    Article  CAS  PubMed  Google Scholar 

  69. Sawyer JR, Tricot G, Lukacs JL, Binz RL, Tian E, Barlogie B et al. Genomic instability in multiple myeloma: evidence for jumping segmental duplications of chromosome arm 1q. Genes Chromosomes Cancer 2005; 42: 95–106.

    Article  CAS  PubMed  Google Scholar 

  70. Desikan KR, Tricot G, Munshi NC, Anaissie E, Spoon D, Fassas A et al. Preceding chemotherapy, tumour load and age influence engraftment in multiple myeloma patients mobilized with granulocyte colony-stimulating factor alone. Br J Haematol 2001; 112: 242–247.

    Article  CAS  PubMed  Google Scholar 

  71. Barlogie B, Smallwood L, Smith T, Alexanian R . High serum levels of lactic dehydrogenase identify a high-grade lymphoma-like myeloma. Ann Intern Med 1989; 110: 521–525.

    Article  CAS  PubMed  Google Scholar 

  72. Alexanian R, Barlogie B, Fritsche H . Beta 2 microglobulin in multiple myeloma. Am J Hematol 1985; 20: 345–351.

    Article  CAS  PubMed  Google Scholar 

  73. Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 2003; 78: 21–33.

    Article  PubMed  Google Scholar 

  74. Pardanani A, Witzig TE, Schroeder G, McElroy EA, Fonseca R, Dispenzieri A et al. Circulating peripheral blood plasma cells as a prognostic indicator in patients with primary systemic amyloidosis. Blood 2003; 101: 827–830.

    Article  CAS  PubMed  Google Scholar 

  75. Rajkumar SV, Fonseca R, Lacy MQ, Witzig TE, Lust JA, Greipp PR et al. Beta2-microglobulin and bone marrow plasma cell involvement predict complete responders among patients undergoing blood cell transplantation for myeloma. Bone Marrow Transplant 1999; 23: 1261–1266.

    Article  CAS  PubMed  Google Scholar 

  76. Greipp PR, Lust JA, O'Fallon WM, Katzmann JA, Witzig TE, Kyle RA . Plasma cell labeling index and beta 2-microglobulin predict survival independent of thymidine kinase and C-reactive protein in multiple myeloma. Blood 1993; 81: 3382–3387.

    Article  CAS  PubMed  Google Scholar 

  77. Gertz MA, Kyle RA, Greipp PR, Katzmann JA, O'Fallon WM . Beta 2-microglobulin predicts survival in primary systemic amyloidosis. Am J Med 1990; 89: 609–614.

    Article  CAS  PubMed  Google Scholar 

  78. Dimopoulos MA, Barlogie B, Smith TL, Alexanian R . High serum lactate dehydrogenase level as a marker for drug resistance and short survival in multiple myeloma. Ann Intern Med 1991; 115: 931–935.

    Article  CAS  PubMed  Google Scholar 

  79. Tricot G, Spencer T, Sawyer J, Spoon D, Desikan R, Fassas A et al. Predicting long-term (> or =5 years) event-free survival in multiple myeloma patients following planned tandem autotransplants. Br J Haematol 2002; 116: 211–217.

    Article  PubMed  Google Scholar 

  80. Rajkumar SV, Fonseca R, Dewald GW, Therneau TM, Lacy MQ, Kyle RA et al. Cytogenetic abnormalities correlate with the plasma cell labeling index and extent of bone marrow involvement in myeloma. Cancer Genet Cytogenet 1999; 113: 73–77.

    Article  CAS  PubMed  Google Scholar 

  81. Steensma DP, Gertz MA, Greipp PR, Kyle RA, Lacy MQ, Lust JA et al. A high bone marrow plasma cell labeling index in stable plateau-phase multiple myeloma is a marker for early disease progression and death. Blood 2001; 97: 2522–2523.

    Article  CAS  PubMed  Google Scholar 

  82. Mateos MV, Hernandez JM, Hernandez MT, Gutierrez NC, Palomera L, Fuertes M et al. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter phase I/II study. Blood 2006; 108: 2165–2172.

    Article  CAS  PubMed  Google Scholar 

  83. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D et al. Clinical factors predictive of outcome with bortezomib in patients with relapsed, refractory multiple myeloma. Blood 2005; 106: 2977–2981.

    Article  CAS  PubMed  Google Scholar 

  84. Palumbo A, Bertola A, Musto P, Caravita T, Callea V, Nunzi M et al. Oral melphalan, prednisone, and thalidomide for newly diagnosed patients with myeloma. Cancer 2005; 104: 1428–1433.

    Article  CAS  PubMed  Google Scholar 

  85. Trudel S, Stewart AK, Rom E, Wei E, Li ZH, Kotzer S et al. The inhibitory anti-FGFR3 antibody, PRO-001 is cytotoxic to t(4;14) multiple myeloma cells. Blood 2006; 107: 4039–4046.

    Article  CAS  PubMed  Google Scholar 

  86. Trudel S, Li ZH, Wei E, Wiesmann M, Chang H, Chen C et al. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 2005; 105: 2941–2948.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A K Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, A., Bergsagel, P., Greipp, P. et al. A practical guide to defining high-risk myeloma for clinical trials, patient counseling and choice of therapy. Leukemia 21, 529–534 (2007). https://doi.org/10.1038/sj.leu.2404516

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404516

Keywords

This article is cited by

Search

Quick links