Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Therapy

Antitumor activity of sorafenib in FLT3-driven leukemic cells

Abstract

Activating internal tandem duplication (ITD) insertions in the juxtamembrane domain of the FLT3 tyrosine kinase are found in about one fourth of patients with acute myeloid leukemia and have been shown to be an independent negative prognostic factor for survival. We show that sorafenib (BAY 43-9006, Nexavar) potently inhibits FLT3 enzymatic and signaling activities. In HEK293 cells stably transfected with FLT3-WT or FLT3-ITD, sorafenib blocked basal and ligand dependent FLT3-mediated tyrosine autophosphorylation as well as extracellular signal-regulated kinase1/2 and Stat5 phosphorylation. In leukemia cell lines MV4-11 and EOL-1, sorafenib treatment resulted in decreased cell proliferation and inhibition of FLT3 signaling. The growth of the FLT3-independent RS4-11 cell line was only weakly inhibited by sorafenib. Cell cycle arrest and induction of apoptosis were observed upon treatment with sorafenib in MV4-11 and EOL-1 cells. The antitumor efficacy of sorafenib was evaluated against the MV4-11 leukemia grown subcutaneously in NCr nu/nu mice. Doses of 3 and 10 mg/kg administered orally for 14 days resulted in six and nine out of 10 animals with complete responses, respectively. The demonstration that sorafenib exhibits potent target inhibition and efficacy in FLT3-driven models suggests that this compound may have a therapeutic benefit for patients with FLT3-driven leukemias.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Jemal A, Seigel R, Ward E, Murray T, Xu J, Smigal C et al. Cancer statistics, 2006. CA Cancer J Clin 2006; 56: 106–130.

    Article  PubMed  Google Scholar 

  2. Bene M, Bernier M, Casasnovas R, Castoldi G, Doekharan D, van der Holt B et al. Acute myeloid leukaemia M0: haematological, immunophenotypic and cytogenetic characteristics and their prognostic significance: an analysis in 241 patients. Br J Haematol 2001; 113: 737–745.

    Article  CAS  PubMed  Google Scholar 

  3. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918.

    CAS  PubMed  Google Scholar 

  4. Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T . Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002; 21: 2555–2563.

    Article  CAS  PubMed  Google Scholar 

  5. Wilhelm S, Carter C, Tang L, Wilkie D, McNabola A, Rong H et al. BAY 43-9006 exhibits broad spectrum oral anti-tumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases ivolved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099–7109.

    Article  CAS  PubMed  Google Scholar 

  6. Fabian M, Biggs Wr, Treiber D, Atteridge C, Azimioara M, Benedetti M et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 2005; 23: 329–336.

    Article  CAS  PubMed  Google Scholar 

  7. Quentmeier H, Reinhardt J, Zaborski M, Drexler H . FLT3 mutations in acute myeloid leukemia cell lines. Leukemia 2003; 17: 120–124.

    Article  CAS  PubMed  Google Scholar 

  8. Zheng R, Levis M, Piloto O, Brown P, Baldwin B, Gorin N et al. FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood 2004; 103: 267–274.

    Article  CAS  PubMed  Google Scholar 

  9. Stong R, Korsmeyer S, Parkin J, Arthur D, Kersey J . Human acute leukemia cell line with the t(4;11) chromosomal rearrangement exhibits B lineage and monocytic characteristics. Blood 1985; 65: 21–31.

    CAS  PubMed  Google Scholar 

  10. Griffin J, Leung J, Bruner R, Caligiuri M, Briesewitz R . Discovery of a fusion kinase in EOL-1 cells and idiopathic hypereosinophilic syndrome. Proc Natl Acad Sci USA 2003; 100: 7830–7835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lierman E, Folens C, Stover E, Mentens N, Van Miegroet H, Scheers W et al. Sorafenib (BAY43-9006) is a potent inhibitor of FIP1L1-PDGFR{alpha} and the imatinib resistant FIP1L1-PDGFR{alpha} T674I mutant. Blood 2006; 108: 1374–1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yao QNR, Kitamura T, Kersey JH . Human leukemias with mutated FLT3 kinase are synergistically sensitive to FLT3 and Hsp90 inhibitors: the key role of the STAT5 signal transduction pathway. Leukemia 2005; 19: 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  13. Spiekermann K, Bagrintseva K, Schwab R, Schmieja K, Hiddemann W . Overexpression and constitutive activation of FLT3 induces STAT5 activation in primary acute myeloid leukemia blast cells. Clin Cancer Res 2003; 9: 2140–2150.

    CAS  PubMed  Google Scholar 

  14. Levis M, Small D . FLT3: ITDoes matter in leukemia. Leukemia 2003; 17: 1738–1752.

    Article  CAS  PubMed  Google Scholar 

  15. Grundler R, Thiede C, Miething C, Steudel C, Peschel C, Duyster J . Sensitivity toward tyrosine kinase inhibitors varies between different activating mutations of the FLT3 receptor. Blood 2003; 102: 646–651.

    Article  CAS  PubMed  Google Scholar 

  16. Ciolli S, Vannucchi A, Leoni F, Nozzoli C, Longo G, Salati A et al. Internal tandem duplications of Flt3 gene (Flt3/ITD) predicts a poor post-remission outcome in adult patients with acute non-promyelocytic leukemia. Leuk Lymphoma 2004; 45: 73–78.

    Article  CAS  PubMed  Google Scholar 

  17. Levis M, Small D . FLT3 tyrosine kinase inhibitors. Int J Hematol 2005; 82: 100–107.

    Article  CAS  PubMed  Google Scholar 

  18. Crump M . Inhibition of raf kinase in the treatment of acute myeloid leukemia. Curr Pharm Des 2002; 8: 2243–2248.

    Article  CAS  PubMed  Google Scholar 

  19. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–3080.

    CAS  PubMed  Google Scholar 

  20. Ricciardi M, McQueen T, Chism D, Milella M, Estey E, Kaldjian E et al. Quantitative single cell determination of ERK phosphorylation and regulation in relapsed and refractory primary acute myeloid leukemia. Leukemia 2005; 19: 1543–1549.

    Article  CAS  PubMed  Google Scholar 

  21. Baines P, Fisher J, Truran L, Davies E, Hallett M, Hoy T et al. The MEK inhibitor, PD98059, reduces survival but does not block acute myeloid leukemia blast maturation in vitro. Eur J Haematol 2000; 64: 211–218.

    Article  CAS  PubMed  Google Scholar 

  22. James J, Smith M, Court E, Yip C, Ching Y, Willson C et al. An investigation of the effects of the MEK inhibitor U0126 on apoptosis in acute leukemia. Hematol J 2003; 4: 427–432.

    Article  CAS  PubMed  Google Scholar 

  23. Lunghi P, Tabilio A, Dall'Aglio P, Ridolo E, Carlo-Stella C, Pelicci P et al. Downmodulation of ERK activity inhibits the proliferation and induces the apoptosis of primary acute myelogenous leukemia blasts. Leukemia 2003; 17: 1783–1793.

    Article  CAS  PubMed  Google Scholar 

  24. Morgan M, Dolp O, Reuter C . Cell-cycle-dependent activation of mitogen-activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling. Blood 2001; 97: 1823–1834.

    Article  CAS  PubMed  Google Scholar 

  25. Beghini A, Ripamonti C, Cairoli R, Cazzaniga G, Colapietro P, Elice F et al. KIT activating mutations: incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication. Haematologica 2004; 89: 920–925.

    CAS  PubMed  Google Scholar 

  26. Foss B, Ulvestad E, Bruserud O . Platelet-derived growth factor (PDGF) in human acute myelogenous leukemia: PDGF receptor expression, endogenous PDGF release and responsiveness to exogenous PDGF isoforms by in vitro cultured acute myelogenous leukemia blasts. Eur J Haematol 2001; 67: 267–278.

    Article  CAS  PubMed  Google Scholar 

  27. Verstovsek S, Estey E, Manshouri T, Giles F, Cortes J, Beran M et al. Clinical relevance of vascular endothelial growth factor receptors 1 and 2 in acute myeloid leukaemia and myelodysplastic syndrome. Br J Haematol 2002; 118: 151–156.

    Article  CAS  PubMed  Google Scholar 

  28. Rocnik J, Okabe R, Yu J-C, Lee B, Giese N, Schenkein D et al. Roles of tyrosine 589 and 591 in STAT5 activation and transformation mediated by FLT3-ITD. Blood 2006; 108: 1339–1345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Knapper S, Mills K, Gilkes A, Austin S, Walsh V, Burnett A . The effects of lestaurtinib (CEP701) and PKC412 on primary AML blasts: the induction of cytotoxicity varies with dependence on FLT3 signaling in both FLT3 mutated and wild type cases. Blood 2006; 108: 3494–3503.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Auclair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auclair, D., Miller, D., Yatsula, V. et al. Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia 21, 439–445 (2007). https://doi.org/10.1038/sj.leu.2404508

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404508

Keywords

This article is cited by

Search

Quick links