Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Identification of a molecular signature for leukemic promyelocytes and their normal counterparts: focus on DNA repair genes

Abstract

Acute promyelocytic leukemia (APL) is a clonal expansion of hematopoietic precursors blocked at the promyelocytic stage. Gene expression profiles of APL cells obtained from 16 patients were compared to eight samples of CD34+-derived normal promyelocytes. Malignant promyelocytes showed widespread changes in transcription in comparison to their normal counterpart and 1020 differentially expressed genes were identified. Discriminating genes include transcriptional regulators (FOS, JUN and HOX genes) and genes involved in cell cycle and DNA repair. The strong upregulation in APL of some transcripts (FLT3, CD33, CD44 and HGF) was also confirmed at protein level. Interestingly, a trend toward a transcriptional repression of genes involved in different DNA repair pathways was found in APL and confirmed by real-time polymerase chain reactor (PCR) in a new set of nine APLs. Our results suggest that both inefficient base excision repair and recombinational repair might play a role in APLs development. To investigate the expression pathways underlying the development of APL occurring as a second malignancy (sAPL), we included in our study eight cases of sAPL. Although both secondary and de novo APL were characterized by a strong homogeneity in expression profiling, we identified a small set of differentially expressed genes that discriminate sAPL from de novo cases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AML:

acute myeloid leukaemia

APL:

acute promyelocytic leukaemia

ATRA:

all-trans retinoic acid

FDR:

false discovery rate

GCOS:

geneChip operating software

GCRMA:

robust multi-array average

HDAC:

histone deacetylase

PCA:

principal component analysis

PML-RARA:

promyelocytic leukemia-retinoic acid receptor alpha

sAML:

AML occurring as a second tumor

sAPL:

APL occurring as a second tumor

References

  1. Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 2002; 295: 1079–1082.

    Article  CAS  Google Scholar 

  2. Segalla S, Rinaldi L, Kilstrup-Nielsen C, Badaracco G, Minucci S, Pelicci PG et al. Retinoic acid receptor alpha fusion to PML affects its transcriptional and chromatin-remodeling properties. Mol Cell Biol 2003; 23: 8795–8808.

    Article  CAS  Google Scholar 

  3. Grignani F, Ferrucci PF, Testa U, Talamo G, Fagioli M, Alcalay M et al. The acute promyelocytic leukemia-specific PML-RAR alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 1993; 74: 423–431.

    Article  CAS  Google Scholar 

  4. Beaumont M, Sanz M, Carli PM, Maloisel F, Thomas X, Detourmignies L et al. Therapy-related acute promyelocytic leukemia. J Clin Oncol 2003; 21: 2123–2137.

    Article  CAS  Google Scholar 

  5. Pulsoni A, Pagano L, Lo Coco F, Avvisati G, Mele L, Di Bona E et al. Clinicobiological features and outcome of acute promyelocytic leukemia occurring as a second tumor: the GIMEMA experience. Blood 2002; 100: 1972–1976.

    Article  CAS  Google Scholar 

  6. Larson RA, Wernli M, Le Beau MM, Daly KM, Pape LH, Rowley JD et al. Short remission durations in therapy-related leukemia despite cytogenetic complete responses to high-dose cytarabine. Blood 1988; 72: 1333–1339.

    CAS  PubMed  Google Scholar 

  7. Estey EH . Prognosis and therapy of secondary myelodysplastic syndromes. Haematologica 1998; 83: 543–549.

    CAS  PubMed  Google Scholar 

  8. Leone G, Voso MT, Sica S, Morosetti R, Pagano L . Therapy related leukemias: susceptibility, prevention and treatment. Leuk Lymphoma 2001; 41: 255–276.

    Article  CAS  Google Scholar 

  9. Ben-Yehuda D, Krichevsky S, Caspi O, Rund D, Polliack A, Abeliovich D et al. Microsatellite instability and p53 mutations in therapy-related leukemia suggest mutator phenotype. Blood 1996; 88: 4296–4303.

    CAS  Google Scholar 

  10. Sheikhha MH, Tobal K, Liu Yin JA . High level of microsatellite instability but not hypermethylation of mismatch repair genes in therapy-related and secondary acute myeloid leukaemia and myelodysplastic syndrome. Br J Haematol 2002; 117: 359–365.

    Article  CAS  Google Scholar 

  11. Casorelli I, Offman J, Mele L, Pagano L, Sica S, D’Errico M et al. Drug treatment in the development of mismatch repair defective acute leukemia and myelodysplastic syndrome. DNA Repair 2003; 142: 1–13.

    Google Scholar 

  12. Bignami M, Casorelli I, Karran P . Mismatch repair and response to DNA-damaging antitumour therapies. Eur J Cancer 2003; 39: 2142–2149.

    Article  CAS  Google Scholar 

  13. Pagano L, Pulsoni A, Tosti ME, Avvisati G, Mele L, Mele M et al. Clinical and biological features of acute myeloid leukaemia occurring as second malignancy: GIMEMA archive of adult acute leukaemia. Br J Haematol 2001; 112: 109–117.

    Article  Google Scholar 

  14. Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S et al. Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics 2002; 18: 1593–1599.

    Article  CAS  Google Scholar 

  15. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  Google Scholar 

  16. Li C, Wong WH . Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 2001; 98: 31–36.

    Article  CAS  Google Scholar 

  17. Li C, Hung Wong W . Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol 2001; 2, (research0032.1–11).

  18. Landgrebe J, Wurst W, Welzl G . Permutation-validated principal components analysis of microarray data. Genome Biol 2002; 3 (research0019.1–11).

  19. Wang A, Gehan EA . Gene selection for microarray data analysis using principal component analysis. Stat Med 2005; 24: 2069–2087.

    Article  Google Scholar 

  20. Topliss JG, Edwards RP . Chance factors in studies of quantitative structure–activity relationships. J Med Chem 1979; 22: 1238–1244.

    Article  CAS  Google Scholar 

  21. Alter O, Brown PO, Botstein D . Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci USA 2000; 97: 10101–10106.

    Article  CAS  Google Scholar 

  22. Pittelkow Y, Wilson SR . Use of principal component analysis and the GE-biplot for the graphical exploration of gene expression data. Biometrics 2005; 61: 630–632 (Discussion 632–634).

    Article  Google Scholar 

  23. Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A et al. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest 2003; 112: 1751–1761.

    Article  CAS  Google Scholar 

  24. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004; 350: 1605–1616.

    Article  CAS  Google Scholar 

  25. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  Google Scholar 

  26. Haferlach T, Kohlmann A, Schnittger S, Dugas M, Hiddemann W, Kern W et al. Global approach to the diagnosis of leukemia using gene expression profiling. Blood 2005; 106: 1189–1198.

    Article  CAS  Google Scholar 

  27. Alter O, Golub GH . Reconstructing the pathways of a cellular system from genome-scale signals by using matrix and tensor computations. Proc Natl Acad Sci USA 2005; 102: 17559–17564.

    Article  CAS  Google Scholar 

  28. Muller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol 2004; 24: 2890–2904.

    Article  Google Scholar 

  29. Walter MJ, Park JS, Lau SK, Li X, Lane AA, Nagarajan R et al. Expression profiling of murine acute promyelocytic leukemia cells reveals multiple model-dependent progression signatures. Mol Cell Biol 2004; 24: 10882–10893.

    Article  CAS  Google Scholar 

  30. Thompson A, Quinn MF, Grimwade D, O'Neill CM, Ahmed MR, Grimes S et al. Global down-regulation of HOX gene expression in PML-RARalpha+acute promyelocytic leukemia identified by small-array real-time PCR. Blood 2003; 101: 1558–1565.

    Article  CAS  Google Scholar 

  31. He LZ, Tribioli C, Rivi R, Peruzzi D, Pelicci PG, Soares V et al. Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci USA 1997; 94: 5302–5307.

    Article  CAS  Google Scholar 

  32. Brown D, Kogan S, Lagasse E, Weissman I, Alcalay M, Pelicci PG et al. A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997; 94: 2551–2556.

    Article  CAS  Google Scholar 

  33. Draptchinskaia N, Gustavsson P, Andersson B, Pettersson M, Willig TN, Dianzani I et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet 1999; 21: 169–175.

    Article  CAS  Google Scholar 

  34. Rusyn I, Asakura S, Pachkowski B, Bradford BU, Denissenko MF, Peters JM et al. Expression of base excision DNA repair genes is a sensitive biomarker for in vivo detection of chemical-induced chronic oxidative stress: identification of the molecular source of radicals responsible for DNA damage by peroxisome proliferators. Cancer Res 2004; 64: 1050–1057.

    Article  CAS  Google Scholar 

  35. Worrillow LJ, Travis LB, Smith AG, Rollinson S, Smith AJ, Wild CP et al. An intron splice acceptor polymorphism in hMSH2 and risk of leukemia after treatment with chemotherapeutic alkylating agents. Clin Cancer Res 2003; 9: 3012–3020.

    CAS  PubMed  Google Scholar 

  36. Seedhouse C, Bainton R, Lewis M, Harding A, Russell N, Das-Gupta E . The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia. Blood 2002; 100: 3761–3766.

    Article  CAS  Google Scholar 

  37. Mistry AR, Felix CA, Whitmarsh RJ, Mason A, Reiter A, Cassinat B et al. DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med 2005; 352: 1529–1538.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ettore Meccia for valuable and constant support in paper preparation. Research grants: this work was supported by individual grants from AIRC and Ministero della Salute to MB, AIRC and MURST/COFIN to SF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Bignami.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casorelli, I., Tenedini, E., Tagliafico, E. et al. Identification of a molecular signature for leukemic promyelocytes and their normal counterparts: focus on DNA repair genes. Leukemia 20, 1978–1988 (2006). https://doi.org/10.1038/sj.leu.2404376

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404376

Keywords

This article is cited by

Search

Quick links