Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Signal Transduction and Cytokines

Alloreaction increases or restores CD40, CD54, and/or HLA molecule expression in acute myelogenous leukemia blasts, through secretion of inflammatory cytokines: dominant role for TNFβ, in concert with IFNγ

Abstract

We have previously reported that alloreaction can lead to activation of dendritic cells through secretion of inflammatory cytokines. Here, we addressed whether alloreaction-derived cytokines may also lead to acute myelogenous leukemia (AML) blast differentiation. With this aim, supernatant (sn) harvested from major or minor histocompatibility antigen-mismatched mixed lymphocyte reaction (MLR) were used to culture French American Bristish (FAB) type M4 or M5 AML blasts. Our results showed that the secreted factors induced upregulation of CD40, CD54, and/or HLA molecules in AML blasts. Protein fractionation, blockade experiments and exogenous cytokine reconstitution demonstrated the involvement of TNF in the upregulation of CD54, CD40 and HLA-class II molecules, and of IFNγ in the increase of HLA-class I and class II molecule expression. But, in line of its much higher levels of secretion, TNFβ, rather than TNFα, was likely to play a preponderant role in AML blast differentiation. Moreover TNFβ and IFNγ were also likely to be involved in the AML blast differentiation-mediated by HLA-identical donor T-cell alloresponse against recipient AML blasts. In conclusion, we show herein that upon allogeneic reaction, TNFβ secretion contributes, in concert with IFNγ, to increase or restore surface molecules involved in AML blast interaction with T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Butturini A, Bortin MM, Gale RP . The graft-versus-leukemia following bone marrow transplantation. Bone Marrow Transplant 1987; 2: 233–242.

    CAS  PubMed  Google Scholar 

  2. Cornelissen JJ, Lowenberg B . Role of allogeneic stem cell transplantation in current treatment of acute myeloid leukemia. Hematology (Am Soc Hematol Educ Program) 2005, 151–155.

  3. Porter DL, Connors JM, Van Deerlin V, Duffy K, Mc Garigle C, Saidman SL et al. Graft-versus tumor induction with donor leukocyte infusions as primary therapy for patients with malignancies. J Clin Oncol 1999; 17: 1234–1243.

    Article  CAS  PubMed  Google Scholar 

  4. Ferrara JL, Reddy P . Pathophysiology of graft-versus-host disease. Semin Hematol 2006; 43: 3–10.

    Article  CAS  PubMed  Google Scholar 

  5. Xun CQ, Thompson JS, Jennings CD, Brown SA, Widmer MB . Effect of total body irradiation, busulfan-cyclophosphamide, or cyclophosphamide conditioning on inflammatory cytokine release and development of acute and chronic graft-versus-host disease in H-2-incompatible transplanted SCID mice. Blood 1994; 83: 2360–2367.

    CAS  PubMed  Google Scholar 

  6. Krenger W, Hill GR, Ferrara JL . Cytokine cascades in acute graft-versus-host disease. Transplantation 1997; 64: 553–558.

    Article  CAS  PubMed  Google Scholar 

  7. Allen RD, Staley TA, Sidman CL . Differential cytokine expression in acute and chronic murine graft-versus-host-disease. Eur J Immunol 1993; 23: 333–337.

    Article  CAS  PubMed  Google Scholar 

  8. Hill GR, Teshima T, Gerbitz A, Pan L, Cooke KR, Brinson YS et al. Differential roles of IL-1 and TNF-alpha on graft-versus-host disease and graft versus leukemia. J Clin Invest 1999; 104: 459–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reddy P, Ferrara JL . Immunobiology of acute graft-versus-host disease. Blood Rev 2003; 17: 187–194.

    Article  PubMed  Google Scholar 

  10. Vogelsang GB, Lee L, Bensen-Kennedy DM . Pathogenesis and treatment of graft-versus-host disease after bone marrow transplant. Ann Rev Med 2003; 54: 29–52.

    Article  CAS  PubMed  Google Scholar 

  11. Cooked RR, Gerbitz A, Crawford JM, Teshima T, Hill GR, Tesolin A et al. LPS antagonism reduces graft-versus-host-disease and preserves graft-versus-leukemia activity after experimental bone marrow transplantation. J Clin Invest 2001; 107: 1581–1589.

    Article  Google Scholar 

  12. Reddy P, Ferrara JL . Role of interleukin-18 in acute graft-vs-host disease. J Lab Clin Med 2003; 141: 365–371.

    Article  CAS  PubMed  Google Scholar 

  13. Wu CJ, Biernacki M, Kutok JL, Rogers S, Chen L, Yang XF et al. Graft-versus-leukemia target antigens in chronic myelogenous leukemia are expressed on myeloid progenitor cells. Clin Cancer Res 2005; 11: 4504–4511.

    Article  CAS  PubMed  Google Scholar 

  14. Kolb HJ, Mittermüller J, Clemm C, Holler E, Ledderose G, Brehm G et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukaemia. In marrow transplant patients. Blood 1990; 76: 2462–2465.

    CAS  PubMed  Google Scholar 

  15. Kloosterboer FM, van Luxemburg-Heijs SA, van Soest RA, Barbui AM, van Egmond HM, Strijbosch MP et al. Direct cloning of leukemia-reactive T cells from patients treated with donor lymphocyte infusion shows a relative dominance of hematopoiesis-restricted minor histocompatibility antigen HA-1 and HA-2 specific T cells. Leukemia 2004; 18: 798–808.

    Article  CAS  PubMed  Google Scholar 

  16. Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 2000; 6: 1018–1023.

    Article  CAS  PubMed  Google Scholar 

  17. Choudhury A, Liang JC, Thomas EK, Flores-Romo L, Xie QS, Agusala K et al. Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses. Blood 1999; 93: 780–786.

    CAS  PubMed  Google Scholar 

  18. Charbonnier A, Gaugler B, Sainty D, Lafage-Pochitaloff M, Olive D . Human acute myeloblastic leukemia cells differentiate in vitro into mature dendritic cells and induce the differentiation of cytotoxic T cells against autologous leukemias. Eur J Immunol 1999; 29: 2567–2578.

    Article  CAS  PubMed  Google Scholar 

  19. Cignetti A, Bryant E, Allione B, Vitale A, Foa R, Cheever MA . CD34(+) acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells. Blood 1999; 94: 2048–2055.

    CAS  PubMed  Google Scholar 

  20. Kharfan-Dabaja M, Ayala E, Lindner I, Cejas PJ, Bahlis NJ, Kolonias D et al. Differentiation of acute and chronic myeloid leukemic blasts into the dendritic cell lineage: analysis of various differentiation-inducing signals. Cancer Immunol Immunother 2005; 54: 25–36.

    Article  CAS  PubMed  Google Scholar 

  21. Eljaafari A, Farre A, Duperrier K, Even J, Vie H, Michallet M et al. Generation of helper and cytotoxic CD4+T cell clones specific for the minor histocompatibility antigen H-Y, after in vitro priming of human T cells by HLA-identical monocyte-derived dendritic cells. Transplantation 2000; 71: 1449–1455.

    Article  Google Scholar 

  22. Brouwer RE, van der Heiden P, Schreuder GM, Mulder A, Datema G, Anholt JD et al. Loss or downregulation of HLA class I expression at the allelic level in acute leukemia is infrequent but functionally relevant, and can be restored by interferon. Hum Immunol 2002; 63: 200–210.

    Article  CAS  PubMed  Google Scholar 

  23. Goh CR, Porter AG . Structural and functional domains in human tumour necrosis factors. Protein Eng 1991; 4: 385–389.

    Article  CAS  PubMed  Google Scholar 

  24. Androlewicz MJ, Browning JL, Ware CF . Lymphotoxin is expressed as a heteromeric complex with a distinct 33-kDa glycoprotein on the surface of an activated human T cell hybridoma. J Biol Chem 1992; 267: 2542–2547.

    CAS  PubMed  Google Scholar 

  25. Paul NC, Ruddle NH . Lymphotoxin. Annu Rev Immunol 1988; 6: 407–438.

    Article  CAS  PubMed  Google Scholar 

  26. Schuchmann M, Hess S, Bufler P, Brakebusch C, Wallach D, Porter A et al. Functional discrepancies between tumor necrosis factor and lymphotoxinαexplained by trimer stability and distinct receptor interactions. Eur J Immunol 1995; 25: 2183–2189.

    Article  CAS  PubMed  Google Scholar 

  27. Chaturvedi MM, LaPushin R, Aggarwal BB . Tumor necrosis factor and lymphotoxin. Qualitative and quantitative differences in the mediation of early and late cellular response. J Biol Chem 1994; 269: 14575–14583.

    CAS  PubMed  Google Scholar 

  28. Holler E, Kolb HJ, Mittermuller J, Kaul M, Ledderose G, Duell T et al. Modulation of acute graft-versus-host-disease after allogeneic bone marrow transplantation by tumor necrosis factor alpha (TNF alpha) release in the course of pretransplant conditioning: role of conditioning regimens and prophylactic application of a monoclonal antibody neutralizing human TNF alpha (MAK 195F). Blood 1995; 86: 890–899.

    CAS  PubMed  Google Scholar 

  29. Korngold R, Marini JC, de Baca ME, Murphy GF, Giles-Komar J . Role of tumor necrosis factor-alpha in graft-versus-host disease and graft-versus-leukemia responses. Biol Blood Marrow Transplant 2003; 9: 292–303.

    Article  CAS  PubMed  Google Scholar 

  30. Laurin D, Kanitakis J, Bienvenu J, Bardin C, Bernaud J, Lebecque S et al. Allogeneic reaction induces dendritic cell maturation through proinflammatory cytokine secretion. Transplantation 2004; 77: 267–275.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was performed with the help of the Belgian Federal Services for Scientific Technical and Cultural Affairs and the Actions de recherches concertées, Communauté Française de Belgique, Direction de la Recherche Scientifique, the Association for Resarch against Cancer, and the Etablissement Français des Greffes. We wish to thank Professor Elizabeth Simpson for her very helpful comments on this paper. No conflicts of interest is present in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Eljaafari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eljaafari, A., Van Snick, J., Voisin, A. et al. Alloreaction increases or restores CD40, CD54, and/or HLA molecule expression in acute myelogenous leukemia blasts, through secretion of inflammatory cytokines: dominant role for TNFβ, in concert with IFNγ. Leukemia 20, 1992–2001 (2006). https://doi.org/10.1038/sj.leu.2404375

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404375

Keywords

Search

Quick links