Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

BCR-ABL fusion regions as a source of multiple leukemia-specific CD8+ T-cell epitopes

Abstract

For immunotherapy of residual disease in patients with Philadelphia-positive leukemias, the BCR-ABL fusion regions are attractive disease-specific T-cell targets. We analyzed these regions for the prevalence of cytotoxic T lymphocyte (CTL) epitopes by an advanced reverse immunology procedure. Seventeen novel BCR-ABL fusion peptides were identified to bind efficiently to the human lymphocyte antigen (HLA)-A68, HLA-B51, HLA-B61 or HLA-Cw4 HLA class I molecules. Comprehensive enzymatic digestion analysis showed that 10 out of the 28 HLA class I binding fusion peptides were efficiently excised after their C-terminus by the proteasome, which is an essential requirement for efficient cell surface expression. Therefore, these peptides are prime vaccine candidates. The other peptides either completely lacked C-terminal liberation or were only inefficiently excised by the proteasome, rendering them inappropriate or less suitable for inclusion in a vaccine. CTL raised against the properly processed HLA-B61 epitope AEALQRPVA from the BCR-ABL e1a2 fusion region, expressed in acute lymphoblastic leukemia (ALL), specifically recognized ALL tumor cells, proving cell surface presentation of this epitope, its applicability for immunotherapy and underlining the accuracy of our epitope identification strategy. Our study provides a reliable basis for the selection of optimal peptides to be included in immunotherapeutic BCR-ABL vaccines against leukemia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kolb HJ, Simoes B, Schmid C . Cellular immunotherapy after allogeneic stem cell transplantation in hematologic malignancies. Curr Opin Oncol 2004; 16: 167–173.

    Article  Google Scholar 

  2. Goulmy E . Human minor histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy. Immunol Rev 1997; 157: 125–140.

    Article  CAS  Google Scholar 

  3. Gannage M, Abel M, Michallet AS, Delluc S, Lambert M, Giraudier S et al. Ex vivo characterization of multiepitopic tumor-specific CD8T cells in patients with chronic myeloid leukemia: implications for vaccine development and adoptive cellular immunotherapy. J Immunol 2005; 174: 8210–8218.

    Article  CAS  Google Scholar 

  4. Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 2000; 6: 1018–1023.

    Article  CAS  Google Scholar 

  5. Goldman JM . Chronic myeloid leukemia. Curr Opin Hematol 1997; 4: 277–285.

    Article  CAS  Google Scholar 

  6. Melo JV . The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 1996; 88: 2375–2384.

    CAS  Google Scholar 

  7. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002; 346: 645–652.

    Article  CAS  Google Scholar 

  8. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  CAS  Google Scholar 

  9. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003; 349: 1423–1432.

    Article  CAS  Google Scholar 

  10. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2: 117–125.

    Article  CAS  Google Scholar 

  11. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  CAS  Google Scholar 

  12. Bosch GJ, Joosten AM, Kessler JH, Melief CJ, Leeksma OC . Recognition of BCR-ABL positive leukemic blasts by human CD4+ T cells elicited by primary in vitro immunization with a BCR-ABL breakpoint peptide. Blood 1996; 88: 3522–3527.

    CAS  PubMed  Google Scholar 

  13. Jiang YZ, Mavroudis D, Dermime S, Hensel N, Couriel D, Molldrem J et al. Alloreactive CD4+ T lymphocytes can exert cytotoxicity to chronic myeloid leukaemia cells processing and presenting exogenous antigen. Br J Haematol 1996; 93: 606–612.

    Article  CAS  Google Scholar 

  14. Bocchia M, Wentworth PA, Southwood S, Sidney J, McGraw K, Scheinberg DA et al. Specific binding of leukemia oncogene fusion protein peptides to HLA class I molecules. Blood 1995; 85: 2680–2684.

    CAS  PubMed  Google Scholar 

  15. Greco G, Fruci D, Accapezzato D, Barnaba V, Nisini R, Alimena G et al. Two brc-abl junction peptides bind HLA-A3 molecules and allow specific induction of human cytotoxic T lymphocytes. Leukemia 1996; 10: 693–699.

    CAS  PubMed  Google Scholar 

  16. Berke Z, Andersen MH, Pedersen M, Fugger L, Zeuthen J, Haurum JS . Peptides spanning the junctional region of both the abl/bcr and the bcr/abl fusion proteins bind common HLA class I molecules. Leukemia 2000; 14: 419–426.

    Article  CAS  Google Scholar 

  17. Buzyn A, Ostankovitch M, Zerbib A, Kemula M, Connan F, Varet B et al. Peptides derived from the whole sequence of BCR-ABL bind to several class I molecules allowing specific induction of human cytotoxic T lymphocytes. Eur J Immunol 1997; 27: 2066–2072.

    Article  CAS  Google Scholar 

  18. Barrett J, Guimaraes A, Cullis J, Goldman JM . Immunological characterization of the tumor-specific bcr/abl junction of Philadelphia chromosome positive chronic myeloid leukemia. Stem Cells 1993; 11: 104–108.

    Article  Google Scholar 

  19. Cullis JO, Barrett AJ, Goldman JM, Lechler RI . Binding of BCR/ABL junctional peptides to major histocompatibility complex (MHC) class I molecules: studies in antigen-processing defective cell lines. Leukemia 1994; 8: 165–170.

    CAS  PubMed  Google Scholar 

  20. Yotnda P, Firat H, Garcia-Pons F, Garcia Z, Gourru G, Vernant JP et al. Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J Clin Invest 1998; 101: 2290–2296.

    Article  CAS  Google Scholar 

  21. Bocchia M, Korontsvit T, Xu Q, Mackinnon S, Yang SY, Sette A et al. Specific human cellular immunity to bcr-abl oncogene-derived peptides. Blood 1996; 87: 3587–3592.

    CAS  Google Scholar 

  22. Norbury LC, Clark RE, Christmas SE . b3a2 BCR-ABL fusion peptides as targets for cytotoxic T cells in chronic myeloid leukaemia. Br J Haematol 2000; 109: 616–621.

    Article  CAS  Google Scholar 

  23. Papadopoulos KP, Suciu-Foca N, Hesdorffer CS, Tugulea S, Maffei A, Harris PE . Naturally processed tissue and differentiation stage specific autologous peptides bound by HLA class I and II molecules of chronic myeloid leukemia blasts. Blood 1997; 90: 4938–4946.

    CAS  PubMed  Google Scholar 

  24. Clark RE, Dodi IA, Hill SC, Lill JR, Aubert G, Macintyre AR et al. Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein. Blood 2001; 98: 2887–2893.

    Article  CAS  Google Scholar 

  25. Cathcart K, Pinilla-Ibarz J, Korontsvit T, Schwartz J, Zakhaleva V, Papadopoulus EB et al. A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood 2003; 103: 1037.

    Article  Google Scholar 

  26. Pinilla-Ibarz J, Cathcart K, Korontsvit T, Soignet S, Bocchia M, Caggiano J et al. Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood 2000; 95: 1781–1787.

    CAS  PubMed  Google Scholar 

  27. Bocchia M, Gentili S, Abruzzese E, Fanelli A, Iuliano F, Tabilio A et al. Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial. Lancet 2005; 365: 657–662.

    Article  CAS  Google Scholar 

  28. Kessler JH, Beekman NJ, Bres-Vloemans SA, Verdijk P, van Veelen PA, Kloosterman-Joosten AM et al. Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J Exp Med 2001; 193: 73–88.

    Article  CAS  Google Scholar 

  29. Beekman NJ, van Veelen PA, van Hall T, Neisig A, Sijts A, Camps M et al. Abrogation of CTL epitope processing by single amino acid substitution flanking the C-terminal proteasome cleavage site. J Immunol 2000; 164: 1898–1905.

    Article  CAS  Google Scholar 

  30. Craiu A, Akopian T, Goldberg A, Rock KL . Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proc Natl Acad Sci USA 1997; 94: 10850–10855.

    Article  CAS  Google Scholar 

  31. Snyder HL, Bacik I, Yewdell JW, Behrens TW, Bennink JR . Promiscuous liberation of MHC-class I-binding peptides from the C termini of membrane and soluble proteins in the secretory pathway. Eur J Immunol 1998; 28: 1339–1346.

    Article  CAS  Google Scholar 

  32. Mo XY, Cascio P, Lemerise K, Goldberg AL, Rock K . Distinct proteolytic processes generate the C and N termini of MHC class I-binding peptides. J Immunol 1999; 163: 5851–5859.

    CAS  PubMed  Google Scholar 

  33. Kloetzel PM, Ossendorp F . Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 2004; 16: 76–81.

    Article  CAS  Google Scholar 

  34. Saveanu L, Carroll O, Hassainya Y, van Endert P . Complexity, contradictions, and conundrums: studying post-proteasomal proteolysis in HLA class I antigen presentation. Immunol Rev 2005; 207: 42–59.

    Article  CAS  Google Scholar 

  35. Yewdell JW, Bennink JR . Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol 1999; 17: 51–88.

    Article  CAS  Google Scholar 

  36. Ayyoub M, Stevanovic S, Sahin U, Guillaume P, Servis C, Rimoldi D et al. Proteasome-assisted identification of a SSX-2-derived epitope recognized by tumor-reactive CTL infiltrating metastatic melanoma. J Immunol 2002; 168: 1717–1722.

    Article  CAS  Google Scholar 

  37. Hassainya Y, Garcia-Pons F, Kratzer R, Lindo V, Greer F, Lemonnier FA et al. Identification of naturally processed HLA-A2--restricted proinsulin epitopes by reverse immunology. Diabetes 2005; 54: 2053–2059.

    Article  CAS  Google Scholar 

  38. Pinkse GG, Tysma OH, Bergen CA, Kester MG, Ossendorp F, van Veelen PA et al. Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. Proc Natl Acad Sci USA 2005; 102: 18425–18430.

    Article  CAS  Google Scholar 

  39. Sekimata M, Hayashi H, Nakayama S, Kano K, Takiguchi M . Serological demonstration of HLA-Bw4/Bw6 epitopes on hybrid molecules between HLA-B35 and HLA-B51. Immunogenetics 1989; 30: 229–231.

    Article  CAS  Google Scholar 

  40. Parker KC, Bednarek MA, Coligan JE . Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 1994; 152: 163–175.

    CAS  Google Scholar 

  41. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S . SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999; 50: 213–219.

    Article  CAS  Google Scholar 

  42. D'Amaro J, Houbiers JG, Drijfhout JW, Brandt RMP, Schipper R, Bavinck JN et al. A computer program for predicting possible cytotoxic T lymphocyte epitopes based on HLA class I peptide-binding motifs. Hum Immunol 1995; 43: 13–18.

    Article  CAS  Google Scholar 

  43. Kessler JH, Mommaas B, Mutis T, Huijbers I, Vissers D, Benckhuijsen WE et al. Competition-based cellular peptide binding assays for 13 prevalent HLA class I alleles using fluorescein-labeled synthetic peptides. Hum Immunol 2003; 64: 245–255.

    Article  CAS  Google Scholar 

  44. van der Burg SH, Ras E, Drijfhout JW, Benckhuijsen WE, Bremers AJ, Melief CJM et al. An HLA class I peptide-binding assay based on competition for binding to class I molecules on intact human B cells. Identification of conserved HIV-1 polymerase peptides binding to HLA-A*0301. Hum Immunol 1995; 44: 189–198.

    Article  CAS  Google Scholar 

  45. Falk K, Rotzschke O, Takiguchi M, Gnau V, Stevanovic S, Jung G et al. Peptide motifs of HLA-B51, -B52 and -B78 molecules, and implications for Behcet's disease. Int Immunol 1995; 7: 223–228.

    Article  CAS  Google Scholar 

  46. Johnson RP, Trocha A, Buchanan TM, Walker BD . Recognition of a highly conserved region of human immunodeficiency virus type 1 gp120 by an HLA-Cw4-restricted cytotoxic T-lymphocyte clone. J Virol 1993; 67: 438–445.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. van der Burg SH, Visseren MJ, Brandt RM, Kast WM, Melief CJ . Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J Immunol 1996; 156: 3308–3314.

    CAS  PubMed  Google Scholar 

  48. Groettrup M, Ruppert T, Kuehn L, Seeger M, Standera S, Koszinowski U et al. The interferon-inducible 11S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20S proteasome in vitro. J Biol Chem 1995; 270: 23808–23815.

    Article  CAS  Google Scholar 

  49. Frisan T, Levitsky V, Polack A, Masucci MG . Phenotype-dependent differences in proteasome subunit composition and cleavage specificity in B cell lines. J Immunol 1998; 160: 3281–3289.

    CAS  PubMed  Google Scholar 

  50. Macagno A, Gilliet M, Sallusto F, Lanzavecchia A, Nestle FO, Groettrup M . Dendritic cells up-regulate immunoproteasomes and the proteasome regulator PA28 during maturation. Eur J Immunol 1999; 29: 4037–4042.

    Article  CAS  Google Scholar 

  51. Fikes JD, Sette A . Design of multi-epitope, analogue-based cancer vaccines. Expert Opin Biol Ther 2003; 3: 985–993.

    Article  CAS  Google Scholar 

  52. Kopp F, Hendil KB, Dahlmann B, Kristensen P, Sobek A, Uerkvitz W . Subunit arrangement in the human 20s proteasome. Proc Natl Acad Sci USA 1997; 94: 2939–2944.

    Article  CAS  Google Scholar 

  53. Falk K, Rotzschke O, Takiguchi M, Gnau V, Stevanovic S, Jung G et al. Peptide motifs of HLA-B58, B60, B61, and B62 molecules. Immunogenetics 1995; 41: 165–168.

    Article  CAS  Google Scholar 

  54. Dick LR, Aldrich C, Jameson SC, Moomaw CR, Pramanik BC, Doyle CK et al. Proteolytic processing of ovalbumin and beta-galactosidase by the proteasome to a yield antigenic peptides. J Immunol 1994; 152: 3884–3894.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ossendorp F, Eggers M, Neisig A, Ruppert T, Groettrup M, Sijts A et al. A single residue exchange within a viral CTL epitope alters proteasome- mediated degradation resulting in lack of antigen presentation. Immunity 1996; 5: 115–124.

    Article  CAS  Google Scholar 

  56. Eggers M, Boes-Fabian B, Ruppert T, Kloetzel PM, Koszinowski UH . The cleavage preference of the proteasome governs the yield of antigenic peptides. J Exp Med 1995; 182: 1865–1870.

    Article  CAS  Google Scholar 

  57. Niedermann G, Butz S, Ihlenfeldt HG, Grimm R, Lucchiari M, Hoschutzky H et al. Contribution of proteasome-mediated proteolysis to the hierarchy of epitopes presented by major histocompatibility complex class I molecules. Immunity 1995; 2: 289–299.

    Article  CAS  Google Scholar 

  58. Mommaas B, Kamp J, Drijfhout JW, Beekman N, Ossendorp F, van Veelen P et al. Identification of a novel HLA-B60-restricted T cell epitope of the minor histocompatibility antigen HA-1 locus. J Immunol 2002; 169: 3131–3136.

    Article  CAS  Google Scholar 

  59. Kuckelkorn U, Ruppert T, Strehl B, Jungblut PR, Zimny-Arndt U, Lamer S et al. Link between organ-specific antigen processing by 20S proteasomes and CD8(+) T cell-mediated autoimmunity. J Exp Med 2002; 195: 983–990.

    Article  CAS  Google Scholar 

  60. Toes RE, Nussbaum AK, Degermann S, Schirle M, Emmerich NP, Kraft M et al. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J Exp Med 2001; 194: 1–12.

    Article  CAS  Google Scholar 

  61. Kuckelkorn U, Frentzel S, Kraft R, Kostka S, Groettrup M, Kloetzel PM . Incorporation of major histocompatibility complex--encoded subunits LMP2 and LMP7 changes the quality of the 20S proteasome polypeptide processing products independent of interferon-gamma. Eur J Immunol 1995; 25: 2605–2611.

    Article  CAS  Google Scholar 

  62. Meidenbauer N, Zippelius A, Pittet MJ, Laumer M, Vogl S, Heymann J et al. High frequency of functionally active Melan-a-specific T cells in a patient with progressive immunoproteasome-deficient melanoma. Cancer Res 2004; 64: 6319–6326.

    Article  CAS  Google Scholar 

  63. Momburg F, Roelse J, Hammerling GJ, Neefjes JJ . Peptide size selection by the major histocompatibility complex-encoded peptide transporter. J Exp Med 1994; 179: 1613–1623.

    Article  CAS  Google Scholar 

  64. Rock KL, York IA, Goldberg AL . Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat Immunol 2004; 5: 670–677.

    Article  CAS  Google Scholar 

  65. Seifert U, Maranon C, Shmueli A, Desoutter JF, Wesoloski L, Janek K et al. An essential role for tripeptidyl peptidase in the generation of an MHC class I epitope. Nat Immunol 2003; 4: 375.

    Article  CAS  Google Scholar 

  66. Sykulev Y, Joo M, Vturina I, Tsomides TJ, Eisen HN . Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 1996; 4: 565–571.

    Article  CAS  Google Scholar 

  67. Valitutti S, Muller S, Dessing M, Lanzavecchia A . Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy. J Exp Med 1996; 183: 1917–1921.

    Article  CAS  Google Scholar 

  68. Faroudi M, Utzny C, Salio M, Cerundolo V, Guiraud M, Muller S et al. Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold. Proc Natl Acad Sci USA 2003; 100: 14145–14150.

    Article  CAS  Google Scholar 

  69. Hudrisier D, Riond J, Garidou L, Duthoit C, Joly E . T cell activation correlates with an increased proportion of antigen among the materials acquired from target cells. Eur J Immunol 2005; 35: 2284–2294.

    Article  CAS  Google Scholar 

  70. Sykulev Y, Cohen RJ, Eisen HN . The law of mass action governs antigen-stimulated cytolytic activity of CD8+ cytotoxic T lymphocytes. Proc Natl Acad Sci USA 1995; 92: 11990–11992.

    Article  CAS  Google Scholar 

  71. Pinilla-Ibarz J, Korontsvit T, Zakhaleva V, Roberts W, Scheinberg DA . Synthetic peptide analogs derived from bcr/abl fusion proteins and the induction of heteroclitic human T-cell responses. Haematologica 2005; 90: 1324–1332.

    CAS  PubMed  Google Scholar 

  72. Sun JY, Senitzer D, Forman SJ, Chatterjee S, Wong Jr KK . Identification of new MHC-restriction elements for presentation of the p210(BCR-ABL) fusion region to human cytotoxic T lymphocytes. Cancer Immunol Immunother 2003; 52: 761–770.

    Article  CAS  Google Scholar 

  73. Posthuma EF, Falkenburg JH, Apperley JF, Gratwohl A, Roosnek E, Hertenstein B et al. HLA-B8 and HLA-A3 coexpressed with HLA-B8 are associated with a reduced risk of the development of chronic myeloid leukemia. The Chronic Leukemia Working Party of the EBMT. Blood 1999; 93: 3863–3865.

    CAS  PubMed  Google Scholar 

  74. Mundhada S, Luthra R, Cano P . Association of HLA Class I and Class II genes with bcr-abl transcripts in leukemia patients with t(9;22) (q34;q11). BMC Cancer 2004; 4: 25.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr M Groettrup for kindly providing antibodies of the immunoproteasome subunits, Dr KB Hendil for the antibodies to the constitutive proteasome subunits and Dr M Takiguchi for providing the C1R-B51 cell line. This work was supported by Grant UL-1994-870 from the Dutch Cancer Society (Amsterdam, The Netherlands). Furthermore, PvV and AdR are supported by the Centre for Medical Systems Biology (a center of excellence approved by the Netherlands Genomics Initiative).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J H Kessler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, J., Bres-Vloemans, S., van Veelen, P. et al. BCR-ABL fusion regions as a source of multiple leukemia-specific CD8+ T-cell epitopes. Leukemia 20, 1738–1750 (2006). https://doi.org/10.1038/sj.leu.2404354

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404354

Keywords

This article is cited by

Search

Quick links