Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytogenetics and Molecular Genetics

Novel FISH probes designed to detect IGK-MYC and IGL-MYC rearrangements in B-cell lineage malignancy identify a new breakpoint cluster region designated BVR2

Abstract

Detection of translocations involving MYC at 8q24.1 in B-cell lineage malignancies (BCL) is important for diagnostic and prognostic purposes. However, routine detection of MYC translocations is often hampered by the wide variation in breakpoint location within the MYC region, particularly when a gene other than IGH, such as IGK or IGL, is involved. To address this issue, we developed and validated four fluorescence in situ hybridization (FISH) probes: two break apart probes to detect IGK and IGL translocations, and two dual-color, dual-fusion FISH (D-FISH) probes to detect IGK-MYC and IGL-MYC. MYC rearrangements (four IGK-MYC, 12 IGL-MYC and four unknown partner gene-MYC) were correctly identified in 20 of 20 archival BCL specimens known to have MYC rearrangements not involving IGH. Seven specimens, all of which lacked MYC rearrangements using a commercial IGH/MYC D-FISH probe, were found to have 8q24 breakpoints within a cluster region >350–645 kb 3′ from MYC, provisionally designated as Burkitt variant rearrangement region 2 (BVR2). FISH is a useful ancillary tool in identifying MYC rearrangements. In light of the discovery of the distally located BVR2 breakpoint cluster region, it is important to use MYC FISH probes that cover a breakpoint region at least 1.0 Mb 3′ of MYC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Au WY, Horsman DE, Gascoyne RD, Viswanatha DS, Klasa RJ, Connors JM . The spectrum of lymphoma with 8q24 aberrations: a clinical, pathological and cytogenetic study of 87 consecutive cases. Leuk Lymphoma 2004; 45: 519–528.

    Article  CAS  PubMed  Google Scholar 

  2. McClure RF, Remstein ED, Macon WR, Dewald GW, Habermann TM, Hoering A et al. Adult B-cell lymphomas with Burkitt-like morphology are phenotypically and genotypically heterogeneous with aggressive clinical behavior. Am J Surg Pathol 2005; 29: 1652–1660.

    Article  PubMed  Google Scholar 

  3. Ladanyi M, Offit K, Chaganti RS . Variant t(8;14) translocations in non-Burkitt's non-Hodgkin's lymphomas. Blood 1992; 79: 1377–1379.

    CAS  PubMed  Google Scholar 

  4. Ladanyi M, Offit K, Jhanwar SC, Filippa DA, Chaganti RS . MYC rearrangement and translocations involving band 8q24 in diffuse large cell lymphomas. Blood 1991; 77: 1057–1063.

    CAS  PubMed  Google Scholar 

  5. Au WY, Horsman DE, Viswanatha DS, Connors JM, Klasa RJ, Gascoyne RD . 8q24 translocations in blastic transformation of mantle cell lymphoma. Haematologica 2000; 85: 1225–1227.

    CAS  PubMed  Google Scholar 

  6. Drach J, Kaufmann H, Urbauer E, Schreiber S, Ackermann J, Huber H . The biology of multiple myeloma. J Cancer Res Clin Oncol 2000; 126: 441–447.

    Article  CAS  PubMed  Google Scholar 

  7. Shou Y, Martelli ML, Gabrea A, Qi Y, Brents LA, Roschke A et al. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci USA 2000; 97: 228–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fabris S, Storlazzi CT, Baldini L, Nobili L, Lombardi L, Maiolo AT et al. Heterogeneous pattern of chromosomal breakpoints involving the MYC locus in multiple myeloma. Genes Chromosomes Cancer 2003; 37: 261–269.

    Article  CAS  PubMed  Google Scholar 

  9. Macpherson N, Lesack D, Klasa R, Horsman D, Connors JM, Barnett M et al. Small noncleaved, non-Burkitt's (Burkitt-like) lymphoma: cytogenetics predict outcome and reflect clinical presentation. J Clin Oncol 1999; 17: 1558–1567.

    Article  CAS  PubMed  Google Scholar 

  10. Kanungo A, Medeiros LJ, Abruzzo LV, Lin P . Lymphoid neoplasms associated with concurrent t(14;18) and 8q24/c-MYC translocation generally have a poor prognosis. Mod Pathol 2006; 19: 25–33.

    Article  CAS  PubMed  Google Scholar 

  11. Magrath I, Jaffe ES, Bhatia K . Burkitt's lymphoma. In: Knowles DM (ed). Neoplastic Hematopathology, 2nd edn. Lippincott Williams & Wilkins: Philadelphia, PA, 2001, pp 953–986.

    Google Scholar 

  12. Bornkamm GW, Polack A, Eick D . c-myc Deregulation by chromosomal translocation in Burkitt's lymphoma. In: Klein G (ed). Cellular Oncogene Activation. Marcel Dekker: New York, NY, 1988, pp 223–273.

    Google Scholar 

  13. Cory S . Activation of cellular oncogenes in hematopoietic cells by chromosome translocation. Adv Cancer Res 1986; 47: 189–234.

    Article  CAS  PubMed  Google Scholar 

  14. Joos S, Falk MH, Lichter P, Haluska FG, Henglein B, Lenoir GM et al. Variable breakpoints in Burkitt lymphoma cells with chromosomal t(8;14) translocation separate c-myc and the IgH locus up to several hundred kb. Hum Mol Genet 1992; 1: 625–632.

    Article  CAS  PubMed  Google Scholar 

  15. Haralambieva E, Schuuring E, Rosati S, van Noesel C, Jansen P, Appel I et al. Interphase fluorescence in situ hybridization for detection of 8q24/MYC breakpoints on routine histologic sections: validation in Burkitt lymphomas from three geographic regions. Genes Chromosomes Cancer 2004; 40: 10–18.

    Article  CAS  PubMed  Google Scholar 

  16. Cario G, Stadt UZ, Reiter A, Welte K, Sykora KW . Variant translocations in sporadic Burkitt's lymphoma detected in fresh tumour material: analysis of three cases. Br J Haematol 2000; 110: 537–546.

    Article  CAS  PubMed  Google Scholar 

  17. Henglein B, Synovzik H, Groitl P, Bornkamm GW, Hartl P, Lipp M . Three breakpoints of variant t(2;8) translocations in Burkitt's lymphoma cells fall within a region 140 kilobases distal from c-myc. Mol Cell Biol 1989; 9: 2105–2113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Henglein B, Lipp M, Hartl P, Adolph S, Hameister H, Eick D et al. Burkitt's lymphoma variant translocations: distribution of chromosomal breakpoints and perturbated regulation of a mutated c-myc gene. Curr Top Microbiol Immunol 1988; 141: 165–171.

    CAS  PubMed  Google Scholar 

  19. Willis TG, Dyer MJ . The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 2000; 96: 808–822.

    CAS  PubMed  Google Scholar 

  20. Poulsen TS, Silahtaroglu AN, Gisselo CG, Tommerup N, Johnsen HE . Detection of illegitimate rearrangements within the immunoglobulin light chain loci in B cell malignancies using end sequenced probes. Leukemia 2002; 16: 2148–2155.

    Article  CAS  PubMed  Google Scholar 

  21. Martin-Subero JI, Harder L, Gesk S, Schlegelberger B, Grote W, Martinez-Climent JA et al. Interphase FISH assays for the detection of translocations with breakpoints in immunoglobulin light chain loci. Int J Cancer 2002; 98: 470–474.

    Article  CAS  PubMed  Google Scholar 

  22. Law ME, Templeton KL, Kitange G, Smith J, Misra A, Feuerstein BG et al. Molecular cytogenetic analysis of chromosomes 1 and 19 in glioma cell lines. Cancer Genet Cytogenet 2005; 160: 1–14.

    Article  CAS  PubMed  Google Scholar 

  23. Einerson RR, Kurtin PJ, Dayharsh GA, Kimlinger TK, Remstein ED . FISH Is superior to PCR in detecting t(14;18)(q32;q21)-IgH/bcl-2 in follicular lymphoma using paraffin-embedded tissue samples. Am J Clin Pathol 2005; 124: 421–429.

    Article  CAS  PubMed  Google Scholar 

  24. Cataldo KA, Jalal SM, Law ME, Ansell SM, Inwards DJ, Fine M et al. Detection of t(2;5) in anaplastic large cell lymphoma: comparison of immunohistochemical studies, FISH, and RT-PCR in paraffin-embedded tissue. Am J Surg Pathol 1999; 23: 1386–1392.

    Article  CAS  PubMed  Google Scholar 

  25. Bornkamm GW, Kaduk B, Kachel G, Schneider U, Fresen KO, Schwanitz G et al. Epstein–Barr virus-positive Burkitt's lymphoma in a German woman during pregnancy. Blut 1980; 40: 167–177.

    Article  CAS  PubMed  Google Scholar 

  26. Bernheim A, Berger R, Lenoir G . Cytogenetic studies on African Burkitt's lymphoma cell lines: t(8;14), t(2;8) and t(8;22) translocations. Cancer Genet Cytogenet 1981; 3: 307–315.

    Article  CAS  PubMed  Google Scholar 

  27. Bernheim A, Berger R, Lenoir G . Cytogenetic studies on Burkitt's lymphoma cell lines. Cancer Genet Cytogenet 1983; 8: 223–229.

    Article  CAS  PubMed  Google Scholar 

  28. Lenoir GM, Vuillaume M, Bonnardel C . The use of lymphomatous and lymphoblastoid cell lines in the study of Burkitt's lymphoma. In: Lenoir GM, O'Conor GT, Olweny CLM (eds). Burkitt's Lymphoma: A Human Cancer Model. International Agency for Research on Cancer: Lyon, 1985, pp 309–318.

    Google Scholar 

  29. Jaffe ES, Harris NL, Stein H, Vardiman JW (eds). Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. World Health Organization Classification of Tumours. World Health Organization: Lyon, 2001, pp 111–114, 142–145, 171–174, 181–184.

    Google Scholar 

  30. Dewald GW, Broderick DJ, Tom WW, Hagstrom JE, Pierre RV . The efficacy of direct, 24-hour culture, and mitotic synchronization methods for cytogenetic analysis of bone marrow in neoplastic hematologic disorders. Cancer Genet Cytogenet 1985; 18: 1–10.

    Article  CAS  PubMed  Google Scholar 

  31. Mitelman F (ed). An International System for Human Cytogenetic Nomenclature. Basel: Karger, 1995, pp 5–85.

  32. Rack KA, Delabesse E, Radford-Weiss I, Bourquelot P, Le Guyader G, Vekemans M et al. Simultaneous detection of MYC, BVR1, and PVT1 translocations in lymphoid malignancies by fluorescence in situ hybridization. Genes Chromosomes Cancer 1998; 23: 220–226.

    Article  CAS  PubMed  Google Scholar 

  33. Haralambieva E, Banham AH, Bastard C, Delsol G, Gaulard P, Ott G et al. Detection by the fluorescence in situ hybridization technique of MYC translocations in paraffin-embedded lymphoma biopsy samples. Br J Haematol 2003; 121: 49–56.

    Article  CAS  PubMed  Google Scholar 

  34. Siebert R, Matthiesen P, Harder S, Zhang Y, Borowski A, Zuhlke-Jenisch R et al. Application of interphase fluorescence in situ hybridization for the detection of the Burkitt translocation t(8;14)(q24;q32) in B-cell lymphomas. Blood 1998; 91: 984–990.

    CAS  PubMed  Google Scholar 

  35. Barth TF, Muller S, Pawlita M, Siebert R, Rother JU, Mechtersheimer G et al. Homogeneous immunophenotype and paucity of secondary genomic aberrations are distinctive features of endemic but not of sporadic Burkitt's lymphoma and diffuse large B-cell lymphoma with MYC rearrangement. J Pathol 2004; 203: 940–945.

    Article  CAS  PubMed  Google Scholar 

  36. Veronese ML, Ohta M, Finan J, Nowell PC, Croce CM . Detection of myc translocations in lymphoma cells by fluorescence in situ hybridization with yeast artificial chromosomes. Blood 1995; 85: 2132–2138.

    CAS  PubMed  Google Scholar 

  37. Levine EG, Arthur DC, Machnicki J, Frizzera G, Hurd D, Peterson B et al. Four new recurring translocations in non-Hodgkin lymphoma. Blood 1989; 74 (5): 1796–1800.

    CAS  PubMed  Google Scholar 

  38. Smadja NV, Fru, Isnard F, Louvet C, Dutel JL, Cheron N et al. Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases. Leukemia 1998; 12: 960–969.

    Article  CAS  PubMed  Google Scholar 

  39. Seong C, Delasalle K, Hayes K, Weber D, Dimopoulos M, Swantkowski J et al. Prognostic value of cytogenetics in multiple myeloma. Br J Haematol 1998; 101: 189–194.

    Article  CAS  PubMed  Google Scholar 

  40. Au WY, Gascoyne RD, Viswanatha DS, Connors JM, Klasa RJ, Horsman DE . Cytogenetic analysis in mantle cell lymphoma: a review of 214 cases. Leuk Lymphoma 2002; 43: 783–791.

    Article  PubMed  Google Scholar 

  41. Dunphy CH, van Deventer HW, Carder KJ, Rao KW, Dent GA . Mature B-cell acute lymphoblastic leukemia with associated translocations (14;18)(q32;q21) and (8;9)(q24;p13). A Burkitt variant? Arch Pathol Lab Med 2003; 127: 610–613.

    PubMed  Google Scholar 

  42. Pantou D, Rizou H, Tsarouha H, Pouli A, Papanastasiou K, Stamatellou M et al. Cytogenetic manifestations of multiple myeloma heterogeneity. Genes Chromosomes Cancer 2005; 42: 44–57.

    Article  CAS  PubMed  Google Scholar 

  43. Sawyer JR, Lukacs JL, Munshi N, Desikan KR, Singhal S, Mehta J et al. Identification of new nonrandom translocations in multiple myeloma with multicolor spectral karyotyping. Blood 1998; 92: 4269–4278.

    CAS  PubMed  Google Scholar 

  44. Sawyer JR, Lukacs JL, Thomas EL, Swanson CM, Goosen LS, Sammartino G et al. Multicolour spectral karyotyping identifies new translocations and a recurring pathway for chromosome loss in multiple myeloma. Br J Haematol 2001; 112: 167–174.

    Article  CAS  PubMed  Google Scholar 

  45. Avet-Loiseau H, Daviet A, Brigaudeau C, Callet-Bauchu E, Terre C, Lafage-Pochitaloff M et al. Cytogenetic, interphase, and multicolor fluorescence in situ hybridization analyses in primary plasma cell leukemia: a study of 40 patients at diagnosis, on behalf of the Intergroupe Francophone du Myelome and the Groupe Francais de Cytogenetique Hematologique. Blood 2001; 97: 822–825.

    Article  CAS  PubMed  Google Scholar 

  46. Avet-Loiseau H, Gerson F, Magrangeas F, Minvielle S, Harousseau JL, Bataille R . Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood 2001; 98: 3082–3086.

    Article  CAS  PubMed  Google Scholar 

  47. McKeithan TW, Shima EA, Le Beau MM, Minowada J, Rowley JD, Diaz MO . Molecular cloning of the breakpoint junction of a human chromosomal 8;14 translocation involving the T-cell receptor alpha-chain gene and sequences on the 3′ side of MYC. Proc Natl Acad Sci USA 1986; 83: 6636–6640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shima EA, Le Beau MM, McKeithan TW, Minowada J, Showe LC, Mak TW et al. Gene encoding the alpha chain of the T-cell receptor is moved immediately downstream of c-myc in a chromosomal 8;14 translocation in a cell line from a human T-cell leukemia. Proc Natl Acad Sci USA 1986; 83: 3439–3443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Finver SN, Nishikura K, Finger LR, Haluska FG, Finan J, Nowell PC et al. Sequence analysis of the MYC oncogene involved in the t(8;14)(q24;q11) chromosome translocation in a human leukemia T-cell line indicates that putative regulatory regions are not altered. Proc Natl Acad Sci USA 1988; 85: 3052–3056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bernard O, Larsen CJ, Hampe A, Mauchauffe M, Berger R, Mathieu-Mahul D . Molecular mechanisms of a t(8;14)(q24;q11) translocation juxtaposing c-myc and TcR-alpha genes in a T-cell leukaemia: involvement of a V alpha internal heptamer. Oncogene 1988; 2: 195–200.

    CAS  PubMed  Google Scholar 

  51. Park JK, McKeithan TW, Le Beau MM, Bitter MA, Franklin WA, Rowley JD et al. An (8;14)(q24;q11) translocation involving the T-cell receptor alpha-chain gene and the MYC oncogene 3′ region in a B-cell lymphoma. Genes Chromosomes Cancer 1989; 1: 15–22.

    Article  CAS  PubMed  Google Scholar 

  52. O'Connor R, Cesano A, Kreider BL, Lange B, Clark SC, Nowell PC et al. Growth factor-dependent differentiation along the myeloid and lymphoid lineages in an immature acute T lymphocytic leukemia. J Immunol 1990; 145: 3779–3787.

    CAS  PubMed  Google Scholar 

  53. Rimokh R, Rouault JP, Wahbi K, Gadoux M, Lafage M, Archimbaud E et al. A chromosome 12 coding region is juxtaposed to the MYC protooncogene locus in a t(8;12)(q24;q22) translocation in a case of B-cell chronic lymphocytic leukemia. Genes Chromosomes Cancer 1991; 3: 24–36.

    Article  CAS  PubMed  Google Scholar 

  54. Finger LR, Huebner K, Cannizzaro LA, McLeod K, Nowell PC, Croce CM . Chromosomal translocation in T-cell leukemia line HUT 78 results in a MYC fusion transcript. Proc Natl Acad Sci USA 1988; 85: 9158–9162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Manolov G, Manolova Y, Klein G, Lenoir G, Levan A . Alternative involvement of two cytogenetically distinguishable breakpoints on chromosome 8 in Burkitt's lymphoma associated translocations. Cancer Genet Cytogenet 1986; 20: 95–99.

    Article  CAS  PubMed  Google Scholar 

  56. Zeidler R, Joos S, Delecluse HJ, Klobeck G, Vuillaume M, Lenoir GM et al. Breakpoints of Burkitt's lymphoma t(8;22) translocations map within a distance of 300 kb downstream of MYC. Genes Chromosomes Cancer 1994; 9: 282–287.

    Article  CAS  PubMed  Google Scholar 

  57. Ratsch A, Joos S, Kioschis P, Lichter P . Topological organization of the MYC/IGK locus in Burkitt's lymphoma cells assessed by nuclear halo preparations. Exp Cell Res 2002; 273: 12–20.

    Article  CAS  PubMed  Google Scholar 

  58. Nishida K, Ritterbach J, Repp R, Harbott J, Lampert F . Characterization of chromosome 8 abnormalities by fluorescence in situ hybridization in childhood B-acute lymphoblastic leukemia/non-Hodgkin lymphoma. Cancer Genet Cytogenet 1995; 79: 8–14.

    Article  CAS  PubMed  Google Scholar 

  59. ar-Rushdi A, Nishikura K, Erikson J, Watt R, Rovera G, Croce CM . Differential expression of the translocated and the untranslocated c-myc oncogene in Burkitt lymphoma. Science 1983; 222: 390–393.

    Article  CAS  PubMed  Google Scholar 

  60. Nishikura K, ar-Rushdi A, Erikson J, Watt R, Rovera G, Croce CM . Differential expression of the normal and of the translocated human c-myc oncogenes in B cells. Proc Natl Acad Sci USA 1983; 80: 4822–4826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Erikson J, Nishikura K, ar-Rushdi A, Finan J, Emanuel B, Lenoir G et al. Translocation of an immunoglobulin kappa locus to a region 3′ of an unrearranged c-myc oncogene enhances c-myc transcription. Proc Natl Acad Sci USA 1983; 80: 7581–7585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Croce CM, Thierfelder W, Erikson J, Nishikura K, Finan J, Lenoir GM et al. Transcriptional activation of an unrearranged and untranslocated c-myc oncogene by translocation of a C lambda locus in Burkitt. Proc Natl Acad Sci USA 1983; 80: 6922–6926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Taub R, Kelly K, Battey J, Latt S, Lenoir GM, Tantravahi U et al. A novel alteration in the structure of an activated c-myc gene in a variant t(2;8) Burkitt lymphoma. Cell 1984; 37: 511–520.

    Article  CAS  PubMed  Google Scholar 

  64. Ptashne M . Gene regulation by proteins acting nearby and at a distance. Nature 1986; 322: 697–701.

    Article  CAS  PubMed  Google Scholar 

  65. Mueller-Storm HP, Sogo JM, Schaffner W . An enhancer stimulates transcription in trans when attached to the promoter via a protein bridge. Cell 1989; 58: 767–777.

    Article  CAS  PubMed  Google Scholar 

  66. Fourel G, Couturier J, Wei Y, Apiou F, Tiollais P, Buendia MA . Evidence for long-range oncogene activation by hepadnavirus insertion. EMBO J 1994; 13: 2526–2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cullen KE, Kladde MP, Seyfred MA . Interaction between transcription regulatory regions of prolactin chromatin. Science 1993; 261: 203–206.

    Article  CAS  PubMed  Google Scholar 

  68. Sasaki H, Ishihara K, Kato R . Mechanisms of Igf2/H19 imprinting: DNA methylation, chromatin and long-distance gene regulation. J Biochem (Tokyo) 2000; 127: 711–715.

    Article  CAS  Google Scholar 

  69. Wittekindt NE, Hortnagel K, Geltinger C, Polack A . Activation of c-myc promoter P1 by immunoglobulin kappa gene enhancers in Burkitt lymphoma: functional characterization of the intron enhancer motifs kappaB, E box 1 and E box 2, and of the 3′ enhancer motif PU. Nucleic Acids Res 2000; 28: 800–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Spencer CA, Groudine M . Control of c-myc regulation in normal and neoplastic cells. Adv Cancer Res 1991; 56: 1–48.

    Article  CAS  PubMed  Google Scholar 

  71. Polack A, Feederle R, Klobeck G, Hortnagel K . Regulatory elements in the immunoglobulin kappa locus induce c-myc activation and the promoter shift in Burkitt's lymphoma cells. EMBO J 1993; 12: 3913–3920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hortnagel K, Mautner J, Strobl LJ, Wolf DA, Christoph B, Geltinger C et al. The role of immunoglobulin kappa elements in c-myc activation. Oncogene 1995; 10: 1393–1401.

    CAS  PubMed  Google Scholar 

  73. Geltinger C, Hortnagel K, Polack A . TATA box and Sp1 sites mediate the activation of c-myc promoter P1 by immunoglobulin kappa enhancers. Gene Expr 1996; 6: 113–127.

    CAS  PubMed  Google Scholar 

  74. Mautner J, Behrends U, Hortnagel K, Brielmeier M, Hammerschmidt W, Strobl L et al. c-myc expression is activated by the immunoglobulin kappa-enhancers from a distance of at least 30 kb but not by elements located within 50 kb of the unaltered c-myc locus in vivo. Oncogene 1996; 12: 1299–1307.

    CAS  PubMed  Google Scholar 

  75. Gerbitz A, Mautner J, Geltinger C, Hortnagel K, Christoph B, Asenbauer H et al. Deregulation of the proto-oncogene c-myc through t(8;22) translocation in Burkitt's lymphoma. Oncogene 1999; 18: 1745–1753.

    Article  CAS  PubMed  Google Scholar 

  76. Cockerill PN, Garrard WT . Chromosomal loop anchorage sites appear to be evolutionarily conserved. FEBS Lett 1986; 204: 5–7.

    Article  CAS  PubMed  Google Scholar 

  77. Cockerill PN, Garrard WT . Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell 1986; 44: 273–282.

    Article  CAS  PubMed  Google Scholar 

  78. Asenbauer H, Combriato G, Klobeck HG . The immunoglobulin lambda light chain enhancer consists of three modules which synergize in activation of transcription. Eur J Immunol 1999; 29: 713–724.

    Article  CAS  PubMed  Google Scholar 

  79. Blomberg BB, Rudin CM, Storb U . Identification and localization of an enhancer for the human lambda L chain Ig gene complex. J Immunol 1991; 147: 2354–2358.

    CAS  PubMed  Google Scholar 

  80. Lefranc MP . Nomenclature of the human immunoglobulin kappa (IGK) genes. Exp Clin Immunogenet 2001; 18: 161–174.

    Article  CAS  PubMed  Google Scholar 

  81. Kawasaki K, Minoshima S, Nakato E, Shibuya K, Shintani A, Asakawa S et al. Evolutionary dynamics of the human immunoglobulin kappa locus and the germline repertoire of the Vkappa genes. Eur J Immunol 2001; 31: 1017–1028.

    Article  CAS  PubMed  Google Scholar 

  82. Zachau HG . The human immunoglobulin K genes. In: Honjo T, Alt FW (eds). Immunoglobulin Genes. 2nd edn. Academic Press: San Diego, CA, 1995, pp 173–191.

    Chapter  Google Scholar 

  83. Whitehurst C, Henney HR, Max EE, Schroeder Jr HW, Stuber F, Siminovitch KA et al. Nucleotide sequence of the intron of the germline human kappa immunoglobulin gene connecting the J and C regions reveals a matrix association region (MAR) next to the enhancer. Nucleic Acids Res 1992; 20: 4929–4930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gimble JM, Max EE . Human immunoglobulin kappa gene enhancer: chromatin structure analysis at high resolution. Mol Cell Biol 1987; 7: 15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Judde JG, Max EE . Characterization of the human immunoglobulin kappa gene 3′ enhancer: functional importance of three motifs that demonstrate B-cell-specific in vivo footprints. Mol Cell Biol 1992; 12: 5206–5216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Klobeck HG, Zachau HG . The human CK gene segment and the kappa deleting element are closely linked. Nucleic Acids Res 1986; 14: 4591–4603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lefranc MP . Nomenclature of the human immunoglobulin lambda (IGL) genes. Exp Clin Immunogenet 2001; 18: 242–254.

    Article  CAS  PubMed  Google Scholar 

  88. Kawasaki K, Minoshima S, Nakato E, Shibuya K, Shintani A, Schmeits JL et al. One-megabase sequence analysis of the human immunoglobulin lambda gene locus. Genome Res 1997; 7: 250–261.

    Article  CAS  PubMed  Google Scholar 

  89. Kawasaki K, Minoshima S, Schooler K, Kudoh J, Asakawa S, de Jong PJ et al. The organization of the human immunoglobulin lambda gene locus. Genome Res 1995; 5: 125–135.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Asli N Silahtaroglu, MSc, PhD, of the Wilhelm Johannsen Centre for Functional Genome Research (Copenhagen, Denmark) for kindly providing Burkitt lymphoma (BL) cell lines JI, BL2, BL60 and LY91; Bruce A Roe, PhD and Fares Najar, PhD of the University of Oklahoma (Norman, OK) for providing proprietary BAC clones used in our pilot studies; Peter J Steiner (Mayo Presentation Design Department) for providing expert help with the manuscript figures by using his superlative skill with Adobe Illustrator and Adobe Photoshop; Judy E Allen (Mayo Cytogenetics Lab) for kindly retrieving Mayo archival metaphase specimens; Jack L Spurbeck (Mayo Cytogenetics Lab) for reviewing karyotypes from the Mayo archives; and the Mayo Molecular Cytogenetics Core Facility for use of their equipment to perform much of this study. Supported in part by Grant CA97274 from the National Institutes of Health, Bethesda, MD, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E D Remstein.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einerson, R., Law, M., Blair, H. et al. Novel FISH probes designed to detect IGK-MYC and IGL-MYC rearrangements in B-cell lineage malignancy identify a new breakpoint cluster region designated BVR2. Leukemia 20, 1790–1799 (2006). https://doi.org/10.1038/sj.leu.2404340

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404340

Keywords

This article is cited by

Search

Quick links