Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytogenetics and Molecular Genetics

A new recurrent 9q34 duplication in pediatric T-cell acute lymphoblastic leukemia

Abstract

Over the last decade, genetic characterization of T-cell acute lymphoblastic leukemia (T-ALL) has led to the identification of a variety of chromosomal abnormalities. In this study, we used array-comparative genome hybridization (array-CGH) and identified a novel recurrent 9q34 amplification in 33% (12/36) of pediatric T-ALL samples, which is therefore one of the most frequent cytogenetic abnormalities observed in T-ALL thus far. The exact size of the amplified region differed among patients, but the critical region encloses 4 Mb and includes NOTCH1. The 9q34 amplification may lead to elevated expression of various genes, and MRLP41, SSNA1 and PHPT1 were found significantly expressed at higher levels. Fluorescence in situ hybridization (FISH) analysis revealed that this 9q34 amplification was in fact a 9q34 duplication on one chromosome and could be identified in 17–39 percent of leukemic cells at diagnosis. Although this leukemic subclone did not predict for poor outcome, leukemic cells carrying this duplication were still present at relapse, indicating that these cells survived chemotherapeutic treatment. Episomal NUP214-ABL1 amplification and activating mutations in NOTCH1, two other recently identified 9q34 abnormalities in T-ALL, were also detected in our patient cohort. We showed that both of these genetic abnormalities occur independently from this newly identified 9q34 duplication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535–1548.

    Article  CAS  PubMed  Google Scholar 

  2. Asnafi V, Radford-Weiss I, Dastugue N, Bayle C, Leboeuf D, Charrin C et al. CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRgammadelta lineage. Blood 2003; 102: 1000–1006.

    Article  CAS  PubMed  Google Scholar 

  3. Bernard OA, Busson-LeConiat M, Ballerini P, Mauchauffe M, Della Valle V, Monni R et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001; 15: 1495–1504.

    Article  CAS  PubMed  Google Scholar 

  4. Dube ID, Kamel-Reid S, Yuan CC, Lu M, Wu X, Corpus G et al. A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14). Blood 1991; 78: 2996–3003.

    CAS  PubMed  Google Scholar 

  5. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

  6. Fitzgerald TJ, Neale GA, Raimondi SC, Goorha RM . c-tal, a helix-loop-helix protein, is juxtaposed to the T-cell receptor-beta chain gene by a reciprocal chromosomal translocation: t(1;7)(p32;q35). Blood 1991; 78: 2686–2695.

    CAS  PubMed  Google Scholar 

  7. McGuire EA, Hockett RD, Pollock KM, Bartholdi MF, O'Brien SJ, Korsmeyer SJ . The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol Cell Biol 1989; 9: 2124–2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mellentin JD, Smith SD, Cleary ML . lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell 1989; 58: 77–83.

    Article  CAS  PubMed  Google Scholar 

  9. Royer-Pokora B, Loos U, Ludwig WD . TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene 1991; 6: 1887–1893.

    CAS  PubMed  Google Scholar 

  10. Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 2005; 19: 358–366.

    Article  CAS  PubMed  Google Scholar 

  11. Xia Y, Brown L, Yang CY, Tsan JT, Siciliano MJ, Espinosa III R et al. TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. Proc Natl Acad Sci USA 1991; 88: 11416–11420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998; 20: 207–211.

    Article  CAS  PubMed  Google Scholar 

  13. Albertson DG, Pinkel D . Genomic microarrays in human genetic disease and cancer. Hum Mol Genet 2003; 12 (Spec No 2): R145–R152.

    Article  CAS  PubMed  Google Scholar 

  14. Mantripragada KK, Buckley PG, de Stahl TD, Dumanski JP . Genomic microarrays in the spotlight. Trends Genet 2004; 20: 87–94.

    Article  CAS  PubMed  Google Scholar 

  15. Veltman JA, Fridlyand J, Pejavar S, Olshen AB, Korkola JE, DeVries S et al. Array-based comparative genomic hybridization for genome-wide screening of DNA copy number in bladder tumors. Cancer Res 2003; 63: 2872–2880.

    CAS  PubMed  Google Scholar 

  16. Hurst CD, Fiegler H, Carr P, Williams S, Carter NP, Knowles MA . High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization. Oncogene 2004; 23: 2250–2263.

    Article  CAS  PubMed  Google Scholar 

  17. Snijders AM, Nowee ME, Fridlyand J, Piek JM, Dorsman JC, Jain AN et al. Genome-wide-array-based comparative genomic hybridization reveals genetic homogeneity and frequent copy number increases encompassing CCNE1 in fallopian tube carcinoma. Oncogene 2003; 22: 4281–4286.

    Article  CAS  PubMed  Google Scholar 

  18. Wilhelm M, Veltman JA, Olshen AB, Jain AN, Moore DH, Presti Jr JC et al. Array-based comparative genomic hybridization for the differential diagnosis of renal cell cancer. Cancer Res 2002; 62: 957–960.

    CAS  PubMed  Google Scholar 

  19. Baldus CD, Liyanarachchi S, Mrozek K, Auer H, Tanner SM, Guimond M et al. Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21: Amplification discloses overexpression of APP, ETS2, and ERG genes. Proc Natl Acad Sci USA 2004; 101: 3915–3920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwaenen C, Nessling M, Wessendorf S, Salvi T, Wrobel G, Radlwimmer B et al. Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. Proc Natl Acad Sci USA 2004; 101: 1039–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 2004; 36: 1084–1089.

    Article  CAS  PubMed  Google Scholar 

  22. De Keersmaecker K, Graux C, Odero MD, Mentens N, Somers R, Maertens J et al. Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32). Blood 2005; 105: 4849–4852.

    Article  CAS  PubMed  Google Scholar 

  23. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  24. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66: 649–661.

    Article  CAS  PubMed  Google Scholar 

  25. Pear WS, Aster JC . T cell acute lymphoblastic leukemia/lymphoma: a human cancer commonly associated with aberrant NOTCH1 signaling. Curr Opin Hematol 2004; 11: 426–433.

    Article  CAS  PubMed  Google Scholar 

  26. Radtke F, Wilson A, Mancini SJ, MacDonald HR . Notch regulation of lymphocyte development and function. Nat Immunol 2004; 5: 247–253.

    Article  CAS  PubMed  Google Scholar 

  27. Harper JA, Yuan JS, Tan JB, Visan I, Guidos CJ . Notch signaling in development and disease. Clin Genet 2003; 64: 461–472.

    Article  CAS  PubMed  Google Scholar 

  28. Stam RW, den Boer ML, Meijerink JP, Ebus ME, Peters GJ, Noordhuis P et al. Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood 2003; 101: 1270–1276.

    Article  CAS  PubMed  Google Scholar 

  29. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y et al. Detection of large-scale variation in the human genome. Nat Genet 2004; 36: 949–951.

    Article  CAS  PubMed  Google Scholar 

  30. Meijerink J, Mandigers C, van de Locht L, Tonnissen E, Goodsaid F, Raemaekers J . A novel method to compensate for different amplification efficiencies between patient DNA samples in quantitative real-time PCR. J Mol Diagn 2001; 3: 55–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJ, Kazemier KM et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 2004; 351: 533–542.

    Article  CAS  PubMed  Google Scholar 

  32. Quesnel B, Preudhomme C, Fenaux P . p16ink4a gene and hematologicalmalignancies. Leuk Lymphoma 1996; 22: 11–24.

    Article  CAS  PubMed  Google Scholar 

  33. Lee SY, Kumano K, Masuda S, Hangaishi A, Takita J, Nakazaki K et al. Mutations of the Notch1 gene in T-cell acute lymphoblastic leukemia: analysis in adults and children. Leukemia 2005; 19: 1841–1843.

    Article  CAS  PubMed  Google Scholar 

  34. Fox RI . Sjogren's syndrome. Lancet 2005; 366: 321–331.

    Article  CAS  PubMed  Google Scholar 

  35. UCSC Genome Browser. http://genome.ucsc.edu Build March 2004.

Download references

Acknowledgements

Research Support: P.V.V. is financed by a grant from the Sophia Foundation for Medical Research (SSWO Grant 440). This study was supported by Ter Meulen Fund, Royal Netherlands Academy of Arts and Sciences, and the Foundation ‘De Drie Lichten’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J P P Meijerink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Vlierberghe, P., Meijerink, J., Lee, C. et al. A new recurrent 9q34 duplication in pediatric T-cell acute lymphoblastic leukemia. Leukemia 20, 1245–1253 (2006). https://doi.org/10.1038/sj.leu.2404247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404247

Keywords

This article is cited by

Search

Quick links