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Modulation of cellular behavior by exogenous messenger RNA
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A major part of current gene therapy research requires stable
integration and long-term expression of a therapeutic gene in
order to be effective.1 Many preclinical and some clinical efforts
try to restore a defective gene function by means of stable gene
transfer in diseases like hemophilia, muscular dystrophy, sickle
cell anemia and various types of severe combined immuno-
deficiency. Despite promising preclinical results in various
animal models, some human clinical applications have been put
on hold owing to unexpected adverse effects related to
uncontrolled stable integration of therapeutic genes;2 this has
led to the search for more safe gene targeting strategies. Next to
those applications that require stable transgene expression, there
are potential cellular therapies based on immunomodulation or
stem cell culture and differentiation that are also in search of
clinically applicable and efficient gene transfer techniques.3,4 In
those circumstances, gene transfer may only need to be transient
until the target cell has been instructed what to do. The field of
transient over- or neo-expression of specific proteins in specific
cell types has been – and still is – dominated by the use of DNA-
based vectors. The least efficient method, although in wide-
spread use at least in the laboratory, is based on transient
introduction of plasmid DNA into cells by lipofection or
electroporation. Although a gene transfer efficiency of 10–50%
using plasmid DNA is considered to be relatively high, in no
way it can compete with currently existing viral transduction
strategies. Although both DNA and RNA viruses are continu-
ously modified and improved for research applications, specific
safety issues, including potential immunogenic and tumorigenic
hazards, still need to be carefully addressed before widespread
clinical applications.
Parallel to the development of DNA-based gene transfer

strategies for transient protein expression, the use of mRNA as
vector for gene transfer has come of age only relatively recently.
The earliest reports describing the usefulness of mRNA transfer
were about mRNA microinjection in oocytes.5 Apart from this
time-consuming, but very useful, single cell-based application,
the use of mRNA for gene transfer has been limited owing to the
generally accepted idea that mRNA is very unstable, difficult to
handle and insufficient to be followed by high levels of protein
expression in transfected cells as compared to viral vectors. All
these points can now be addressed, because novel technologies
have been developed that make mRNA transfection a highly
efficient alternative to DNA transfection and very competitive
with viral transduction techniques. In 1996, the group of Eli
Gilboa opened a new perspective on the use of mRNA for gene
transfer in dendritic cells (DC). Dendritic cells are professional
antigen-presenting cells of the immune system capable of
priming memory and naive T cells in vitro and in vivo. Their
initial studies demonstrated that murine and human DC,
passively pulsed or lipofected with defined or total tumor
mRNA, were able to induce antigen-specific immune re-
sponses.6,7 Although lipofection of mRNA coding for the
enhanced green fluorescent protein (EGFP) resulted in detect-
able EGFP expression by flow cytometric analysis, passive
pulsing did not result in any detectable EGFP protein. Never-

theless, despite the absence of detectable protein expression
after passive pulsing of tumor antigen-encoding mRNA, in these
and following publications clear biological effects, that is,
antigen presentation followed by T-cell activation, have been
demonstrated, indicating (1) that mechanisms exist by which
cells can take up and translate small amounts of exogenous
mRNA and (2) that the transfer of small amounts of exogenous
mRNA can indeed modulate the cellular behavior of DC.
Although these effects are observed in vitro, it remains to be
determined whether they also occur naturally in vivo. In the
following years, based on the above-described results, various
research groups have developed improved methodologies for in
vitro transfer of mRNA into cells. By now, RNA transfer by
means of electroporation has become one of the most promising
gene transfer applications where short-term introduction of
certain proteins is needed in order to obtain a biological effect.
For example, (1) DC electroporated with mRNA encoding
tumor-associated or viral antigens or co-stimulatory molecules
appear to have high T-cell immune stimulatory effects in vitro,8–13

(2) unconditioned T cells electroporated with mRNA encoding
cloned antigen-specific T-cell receptors appear to be function-
ally reprogrammed in order to destroy specific target cells;14 and
(3) stem cell populations electroporated with mRNA encoding
specific growth factors appear to become committed towards a
specific lineage of differentiation.15,16 Altogether, these data
support the hypothesis that cellular behavior can be modified by
means of in vitro RNA transfer.

A natural in vivo process of RNA crosstalk has recently been
demonstrated in plants. Plasmodesmata are plant-specific
intercellular organelles that connect the cytoplasm of neighbor-
ing plant cells, allowing passive or active exchange of
cytoplasmic macromolecules, including proteins and RNA
molecules. These plasmodesmata also connect plant cells to
the phloem and xylem, the plant long-distance circulatory
system that allows transport of water and minerals from roots to
leaves (through xylem) and sugars and amino acids from leaves
to roots (through phloem). Experimental evidence recently
showed that both specific mRNAs and specific small single-
stranded RNA molecules are transported throughout the plant
body via the phloem.17,18 Although still under intensive
investigation, this long-distance transmission of RNA molecules
via the phloem is believed to be one of the mechanisms used by
plants to exert systemic control over developmental, physio-
logical and physiopathological processes, including transposon
activity, transcriptional and translational processes and viral
infection.19 These observations demonstrate that there is not
only an in vitro use for mRNA transfer in modulation of cellular
behavior, but that an in vivo specific mechanism based on
transfer of mRNA has also evolved in order to control cellular
behavior.

Although animal cells also have intercellular bridges, these
gap junctions have a maximal functional pore size of about
1.5 nm, implying that coupled cells can share their small
molecules (such as inorganic ions, sugars, amino acids,
nucleotides, vitamins and the intracellular mediators cyclic
AMP and inositol trisphosphate) but not their macromolecules
(proteins, nucleic acids and polysaccharides). In the field of
animal cell signalling, in addition to growth factors, cytokines,
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adhesion molecules and small mediators such as nucleotides,
the existence and potential function of cell-derived microve-
sicles as mediators in cell-to-cell communication has gained
much interest.20,21 These microvesicles appear to originate from
the membrane of activated or apoptotic cells and transfer
membrane proteins and RNA towards neighboring cells in an in
vitro and presumably in vivo mechanism of cell-to-cell
signalling, as demonstrated for the interaction between tumor-
derived microvesicles and monocytes.22 In this issue of
Leukemia, Ratajczak et al.23 report on the characterization of
microvesicles derived from embryonic stem (ES) cells. Analysis
of their content, as compared to that of ES cells, revealed that
these microvesicles were significantly enriched for specific
proteins and protein-encoding mRNAs involved in self-renewal
of stem cells. Furthermore, these microvesicles can be used in
vitro as physiological liposomes for transfecting immature
hematopoietic progenitor cells. Upon release of their content
– either protein or translatable mRNA – into hematopoietic
progenitors, some degree of increased self-renewal was ob-
served in vitro and in vivo.

Although it is not clear at the moment how such a
microvesicle-mediated mRNA-based cell-to-cell communica-
tion system is actually influencing cellular behavior in vivo, a
recent study describing cytotoxic T-lymphocyte induction after
vaccination of mice with liposome-encapsulated mRNA de-
monstrates the potential power of this novel cell communication
tool.24 The findings of Ratajczak et al. open many new research
perspectives for the development of RNA-based gene transfer
strategies in vitro and in vivo. First, as cell-derived microvesicles
seem to be acting as physiological liposomes, their potential
use, both in vitro and in vivo, might provide an advantage over
currently used lipofection or electroporation methodology for
transferring exogenous mRNA into cells in order to control and/
or direct cellular behavior. Secondly, the fact that these
microvesicles are specifically enriched for certain proteins and
transcription factors implies the existence of cellular control
mechanisms, possibly unknown targeting signals on protein and
mRNA, able to collect and encapsulate these factors into
microvesicles. Understanding this mechanism might in time
allow for the production of engineered microvesicles containing
your favorite proteins or mRNAs that can be used as efficient
vehicles for in vitro and in vivo protein or mRNA delivery in
animal cells.
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