Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia, Normal B and T Cells

Thymidine-phosphorothioate oligonucleotides induce activation and apoptosis of CLL cells independently of CpG motifs or BCL-2 gene interference

Abstract

We compared antisense phosphorothioate oligonucleotides (PS-ODN) that target BCL-2 such as GenasenseĀ® (G3139-PS), with other PS-ODN or phosphodiester-ODN (PO-ODN) in their relative capacity to induce apoptosis of chronic lymphocytic leukemia (CLL) B cells in vitro. Surprisingly, we found that thymidine-containing PS-ODN, but not PO-ODN, induced activation and apoptosis of CLL cells independent of BCL-2 antisense sequence or CpG motifs. All tested thimidine-containing PS-ODN, irrespective of their primary sequences, reduced the expression of Bcl-2 protein and increased the levels of the proapoptotic molecules p53, Bid, Bax in CLL cells. Apoptosis induced by thymidine-containing PS-ODN was preceded by cellular activation, could be blocked by the tyrosine-kinase inhibitor imatinib mesylate (GleevecĀ®), and was dependent on ABL kinase. We conclude that thymidine-containing PS-ODN can activate CLL cells and induce apoptosis via a mechanism that is independent of BCL-2 gene interference or CpG motifs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wagner RW . Gene inhibition using antisense oligodeoxynucleotides. Nature 1994; 372: 333ā€“335.

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Donis-Keller H . Site specific enzymatic cleavage of RNA. Nucleic Acids Res 1979; 7: 179ā€“192.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Crooke ST . Progress in antisense technology. Annu Rev Med 2004; 55: 61ā€“95.

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Stephens AC, Rivers RP . Antisense oligonucleotide therapy in cancer. Curr Opin Mol Ther 2003; 5: 118ā€“122.

    CASĀ  PubMedĀ  Google ScholarĀ 

  5. Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC . bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 1993; 82: 1820ā€“1828.

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. Reed JC . Dysregulation of apoptosis in cancer. J Clin Oncol 1999; 17: 2941ā€“2953.

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Reed JC, Stein C, Subasinghe C, Haldar S, Croce CM, Yum S et al. Antisense-mediated inhibition of BCL2 protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res 1990; 50: 6565ā€“6570.

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Cotter FE, Johnson P, Hall P, Pocock C, al Mahdi N, Cowell JK et al. Antisense oligonucleotides suppress B-cell lymphoma growth in a SCID-hu mouse model. Oncogene 1994; 9: 3049ā€“3055.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Klasa RJ, Gillum AM, Klem RE, Frankel SR . Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment. Antisense Nucleic Acid Drug Dev 2002; 12: 193ā€“213.

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Rudin CM, Kozloff M, Hoffman PC, Edelman MJ, Karnauskas R, Tomek R et al. Phase I study of G3139, a bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small-cell lung cancer. J Clin Oncol 2004; 22: 1110ā€“1117.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Marcucci G, Stock W, Dai G, Klisovic RB, Liu S, Klisovic MI et al. Phase I study of oblimersen sodium, an antisense to Bcl-2, in untreated older patients with acute myeloid leukemia: pharmacokinetics, pharmacodynamics, and clinical activity. J Clin Oncol 2005; 23: 3404ā€“3411.

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Tolcher AW, Chi K, Kuhn J, Gleave M, Patnaik A, Takimoto C et al. A phase II, pharmacokinetic, and biological correlative study of oblimersen sodium and docetaxel in patients with hormone-refractory prostate cancer. Clin Cancer Res 2005; 11: 3854ā€“3861.

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Reed JC . Promise and problems of Bcl-2 antisense therapy. J Natl Cancer Inst 1997; 89: 988ā€“990.

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995; 374: 546ā€“549.

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Kato K, Cantwell MJ, Sharma S, Kipps TJ . Gene transfer of CD40-ligand induces autologous immune recognition of chronic lymphocytic leukemia B cells. J Clin Invest 1998; 101: 1133ā€“1141.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Matutes E, Owusu-Ankomah K, Morilla R, Garcia Marco J, Houlihan A, Que TH et al. The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia 1994; 8: 1640ā€“1645.

    CASĀ  PubMedĀ  Google ScholarĀ 

  17. Raynaud FI, Orr RM, Goddard PM, Lacey HA, Lancashire H, Judson IR et al. Pharmacokinetics of G3139, a phosphorothioate oligodeoxynucleotide antisense to bcl-2, after intravenous administration or continuous subcutaneous infusion to mice. J Pharmacol Exp Ther 1997; 281: 420ā€“427.

    CASĀ  PubMedĀ  Google ScholarĀ 

  18. Castro JE, Motta M, Wu C, Carson DA, Kipps TJ . Phosphorothioate oligodeoxynucleotides activate chronic lymphocytic leukemia B cells through a CpG independent mechanism. Blood 2002; 100: 1463a.

    Google ScholarĀ 

  19. Wu CC, Castro JE, Motta M, Cottam HB, Kyburz D, Kipps TJ et al. Selection of oligonucleotide aptamers with enhanced uptake and activation of human leukemia B cells. Hum Gene Ther 2003; 14: 849ā€“860.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Krajewski S, Bodrug S, Gascoyne R, Berean K, Krajewska M, Reed JC . Immunohistochemical analysis of Mcl-1 and Bcl-2 proteins in normal and neoplastic lymph nodes. Am J Pathol 1994; 145: 515ā€“525.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Svingen PA, Karp JE, Krajewski S, Mesner Jr PW, Gore SD, Burke PJ et al. Evaluation of Apaf-1, and procaspases-2, -3, -7, -8, and -9 as potential prognostic markers in acute leukemia. Blood 2000; 96: 3922ā€“3931.

    CASĀ  PubMedĀ  Google ScholarĀ 

  22. Chu P, Deforce D, Pedersen IM, Kim Y, Kitada S, Reed JC et al. Latent sensitivity to Fas-mediated apoptosis after CD40 ligation may explain activity of CD154 gene therapy in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 3854ā€“3859.

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Cantwell MJ, Sharma S, Friedmann T, Kipps TJ . Adenovirus vector infection of chronic lymphocytic leukemia B cells. Blood 1996; 88: 4676ā€“4683.

    CASĀ  PubMedĀ  Google ScholarĀ 

  24. Baumgarth N . A two-phase model of B-cell activation. Immunol Rev 2000; 176: 171ā€“180.

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Morgan E, Varro R, Sepulveda H, Ember JA, Apgar J, Wilson J et al. Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clin Immunol 2004; 110: 252ā€“266.

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Radloff M, Gercken G . Protein kinase C activity and phosphoprotein pattern in stimulated alveolar macrophages. Toxicol Lett 1996; 88: 139ā€“145.

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Vlahos CJ, Matter WF, Hui KY, Brown RF . A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 1994; 269: 5241ā€“5248.

    CASĀ  PubMedĀ  Google ScholarĀ 

  28. Qatsha KA, Rudolph C, Marme D, Schachtele C, May WS . Go 6976, a selective inhibitor of protein kinase C, is a potent antagonist of human immunodeficiency virus 1 induction from latent/low-level-producing reservoir cells in vitro. Proc Natl Acad Sci USA 1993; 90: 4674ā€“4678.

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Druker BJ et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 1996; 56: 100ā€“104.

    CASĀ  Google ScholarĀ 

  30. Bakhtiar R, Lohne J, Ramos L, Khemani L, Hayes M, Tse F . High-throughput quantification of the anti-leukemia drug STI571 (Gleevec) and its main metabolite (CGP 74588) in human plasma using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 768: 325ā€“340.

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Pepper C, Thomas A, Hoy T, Cotter F, Bentley P . Antisense-mediated suppression of Bcl-2 highlights its pivotal role in failed apoptosis in B-cell chronic lymphocytic leukaemia. Br J Haematol 1999; 107: 611ā€“615.

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Raffo A, Lai JC, Stein CA, Miller P, Scaringe S, Khvorova A et al. Antisense RNA down-regulation of bcl-2 expression in DU145 prostate cancer cells does not diminish the cytostatic effects of G3139 (Oblimersen). Clin Cancer Res 2004; 10: 3195ā€“3206.

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Krieg AM . From A to Z on CpG. Trends Immunol 2002; 23: 64ā€“65.

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Vollmer J, Janosch A, Laucht M, Ballas ZK, Schetter C, Krieg AM . Highly immunostimulatory CpG-free oligodeoxynucleotides for activation of human leukocytes. Antisense Nucleic Acid Drug Dev 2002; 12: 165ā€“175.

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Reed JC . Apoptosis-targeted therapies for cancer. Cancer Cell 2003; 3: 17ā€“22.

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Gibson LF, Fortney J, Magro G, Ericson SG, Lynch JP, Landreth KS . Regulation of BAX and BCL-2 expression in breast cancer cells by chemotherapy. Breast Cancer Res Treat 1999; 55: 107ā€“117.

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Husain SS, Szabo IL, Tamawski AS . NSAID inhibition of GI cancer growth: clinical implications and molecular mechanisms of action. Am J Gastroenterol 2002; 97: 542ā€“553.

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Wang JY . DNA damage and apoptosis. Cell Death Differ 2001; 8: 1047ā€“1048.

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Lain S, Lane D . Improving cancer therapy by non-genotoxic activation of p53. Eur J Cancer 2003; 39: 1053ā€“1060.

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Pluquet O, Hainaut P . Genotoxic and non-genotoxic pathways of p53 induction. Cancer Lett 2001; 174: 1ā€“15.

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Chau BN, Chen TT, Wan YY, DeGregori J, Wang JY . Tumor necrosis factor alpha-induced apoptosis requires p73 and c-ABL activation downstream of RB degradation. Mol Cell Biol 2004; 24: 4438ā€“4447.

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Wang JY . Regulation of cell death by the Abl tyrosine kinase. Oncogene 2000; 19: 5643ā€“5650.

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Goldberg Z, Vogt Sionov R, Berger M, Zwang Y, Perets R, Van Etten RA et al. Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation. EMBO J 2002; 21: 3715ā€“3727.

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Vella V, Zhu J, Frasca F, Li CY, Vigneri P, Vigneri R et al. Exclusion of c-Abl from the nucleus restrains the p73 tumor suppression function. J Biol Chem 2003; 278: 25151ā€“25157.

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin Jr WG, Levrero M et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 1999; 399: 806ā€“809.

    ArticleĀ  CASĀ  Google ScholarĀ 

  46. Truong T, Sun G, Doorly M, Wang JY, Schwartz MA . Modulation of DNA damage-induced apoptosis by cell adhesion is independently mediated by p53 and c-Abl. Proc Natl Acad Sci USA 2003; 100: 10281ā€“10286.

    ArticleĀ  CASĀ  Google ScholarĀ 

  47. Yi X, Yin XM, Dong Z . Inhibition of Bid-induced apoptosis by Bcl-2. tBid insertion, Bax translocation, and Bax/Bak oligomerization suppressed. J Biol Chem 2003; 278: 16992ā€“16999.

    ArticleĀ  CASĀ  Google ScholarĀ 

  48. Wang K, Yin XM, Chao DT, Milliman CL, Korsmeyer SJ . BID: a novel BH3 domain-only death agonist. Genes Dev 1996; 10: 2859ā€“2869.

    ArticleĀ  CASĀ  Google ScholarĀ 

  49. Leu JI, Dumont P, Hafey M, Murphy ME, George DL . Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 2004; 6: 443ā€“450.

    ArticleĀ  CASĀ  Google ScholarĀ 

  50. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004; 303: 1010ā€“1014.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgements

This work was supported by a National Institutes of Health K08 Grant CA106 605-01 (JEC) and PO1 Grant CA 81534 for the CLL Research Consortium (TJK). The authors acknowledge the helpful technical support provided by Dr Anissa Agadir from Pharmingen, La Jolla, CA and Dr Laura Rassenti from the Chronic lymphocytic leukemia Research Consortium (C.R.C)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T J Kipps.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, J., Prada, C., Aguillon, R. et al. Thymidine-phosphorothioate oligonucleotides induce activation and apoptosis of CLL cells independently of CpG motifs or BCL-2 gene interference. Leukemia 20, 680ā€“688 (2006). https://doi.org/10.1038/sj.leu.2404144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404144

Keywords

This article is cited by

Search

Quick links