Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Fusion tyrosine kinase mediated signalling pathways in the transformation of haematopoietic cells

Abstract

The fusion tyrosine kinases (FTKs) are generated by chromosomal translocations creating bipartite proteins in which the kinase is hyperactivated by an adjoining oligomerization domain. Autophosphorylation of the FTK generates a ‘signalosome’, an ensemble of signalling proteins that transduce signals to downstream pathways. At the earliest stages of oncogenesis, FTKs can mimic mitogenic cytokine signalling pathways involving the GAB-2 adaptor protein and signal transducers and activators of transcription (STAT) factors, generating replicative stress and thereby promoting a mutator phenotype. In parallel, FTKs couple to survival pathways that upregulate prosurvival proteins such as Bcl-xL, so preventing DNA-damage-induced apoptosis. Following transformation, FTKs induce resistance to genotoxic attack by upregulating DNA repair mechanisms such as STAT5-dependent RAD51 transcription. The phenomenon of ‘oncogene addiction’ reflects the continued requirement of an active FTK ‘signalosome’ to mediate survival and mitogenic signals involving the PI 3-kinase and mitogen-activated protein stress-activated protein kinase pathways, and the nuclear factor-kappa B, activator protein 1 and STAT transcription factors. The available data so far suggest that FTKs, with some possible exceptions, induce and maintain the transformed state using similar panoplies of signals, a finding with important therapeutic implications. The FTK signalling field has matured to an exciting phase in which rapid advances are facilitating rational drug design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Blume-Jensen P, Hunter T . Oncogenic kinase signalling. Nature 2001; 411: 355–365.

    Article  CAS  PubMed  Google Scholar 

  2. Skorski T . Oncogenic tyrosine kinases and the DNA-damage response. Nat Rev Cancer 2002; 2: 351–360.

    Article  CAS  PubMed  Google Scholar 

  3. Rowley JD . Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293.

    Article  CAS  PubMed  Google Scholar 

  4. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994; 263: 1281–1284.

    Article  CAS  PubMed  Google Scholar 

  5. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukaemia. Science 1997; 278: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  6. Pittaluga S, Wlodarska I, Pulford K, Campo E, Morris SW, Van den Berghe H et al. The monoclonal antibody ALK1 identifies a distinct morphological subtype of anaplastic large cell lymphoma associated with 2p23/ALK rearrangements. Am J Pathol 1997; 151: 343–351.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sweet-Cordero A, Mukherjee S, Subramanian A, You H, Roix JJ, Ladd-Acosta C et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet 2005; 37: 48–55.

    Article  CAS  PubMed  Google Scholar 

  8. Maeda T, Yagasaki F, Ishikawa M, Takahashi N, Bessho M . Transforming property of TEL-FGFR3 mediated through PI3-K in a T-cell lymphoma that subsequently progressed to AML. Blood 2005; 105: 2115–2123.

    Article  CAS  PubMed  Google Scholar 

  9. Eguchi M, Eguchi-Ishimae M, Tojo A, Morishita K, Suzuki K, Sato Y et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukaemia with t(12;15)(p13;q25). Blood 1999; 93: 1355–1363.

    CAS  PubMed  Google Scholar 

  10. Cazzaniga G, Dell'oro MG, Mecucci C, Giarin E, Masetti R, Rossi V et al. Nucleophosmin mutations in childhood acute myelogenous leukaemia with normal karyotype. Blood 2005; 106: 1419–1422.

    Article  CAS  PubMed  Google Scholar 

  11. Kuno Y, Abe A, Emi N, Iida M, Yokozawa T, Towatari M et al. Constitutive kinase activation of the TEL-Syk fusion gene in myelodysplastic syndrome with t(9;12)(q22;p12). Blood 2001; 97: 1050–1055.

    Article  CAS  PubMed  Google Scholar 

  12. Reiter A, Walz C, Watmore A, Schoch C, Blau I, Schlegelberger B et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukaemia that fuses PCM1 to JAK2. Cancer Res 2005; 65: 2662–2667.

    Article  CAS  PubMed  Google Scholar 

  13. Bousquet M, Quelen C, De Mas V, Duchayne E, Roquefeuil B, Delsol G et al. The t(8;9)(p22;p24) translocation in atypical chronic myeloid leukaemia yields a new PCM1-JAK2 fusion gene. Oncogene 2005; 24: 7248–7252.

    Article  CAS  PubMed  Google Scholar 

  14. Belloni E, Trubia M, Gasparini P, Micucci C, Tapinassi C, Confalonieri S et al. 8p11 myeloproliferative syndrome with a novel t(7;8) translocation leading to fusion of the FGFR1 and TIF1 genes. Genes Chromosomes Cancer 2005; 42: 320–325.

    Article  CAS  PubMed  Google Scholar 

  15. Colleoni GW, Bridge JA, Garicochea B, Liu J, Filippa DA, Ladanyi M . ATIC-ALK: a novel variant ALK gene fusion in anaplastic large cell lymphoma resulting from the recurrent cryptic chromosomal inversion, inv(2)(p23q35). Am J Pathol 2000; 156: 781–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Trinei M, Lanfrancone L, Campo E, Pulford K, Mason DY, Pelicci PG et al. A new variant anaplastic lymphoma kinase (ALK)-fusion protein (ATIC-ALK) in a case of ALK-positive anaplastic large cell lymphoma. Cancer Res 2000; 60: 793–798.

    CAS  PubMed  Google Scholar 

  17. Hernandez L, Pinyol M, Hernandez S, Bea S, Pulford K, Rosenwald A et al. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 1999; 94: 3265–3268.

    CAS  PubMed  Google Scholar 

  18. Touriol C, Greenland C, Lamant L, Pulford K, Bernard F, Rousset T et al. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 2000; 95: 3204–3207.

    CAS  PubMed  Google Scholar 

  19. Bridge JA, Kanamori M, Ma Z, Pickering D, Hill DA, Lydiatt W et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumour. Am J Pathol 2001; 159: 411–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumours. Am J Pathol 2000; 157: 377–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lamant L, Dastugue N, Pulford K, Delsol G, Mariame B . A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 1999; 93: 3088–3095.

    CAS  PubMed  Google Scholar 

  22. Lamant L, Gascoyne RD, Duplantier MM, Armstrong F, Raghab A, Chhanabhai M et al. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer 2003; 37: 427–432.

    Article  CAS  PubMed  Google Scholar 

  23. Cools J, Wlodarska I, Somers R, Mentens N, Pedeutour F, Maes B et al. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumour. Genes Chromosomes Cancer 2002; 34: 354–362.

    Article  CAS  PubMed  Google Scholar 

  24. Papadopoulos P, Ridge SA, Boucher CA, Stocking C, Wiedemann LM . The novel activation of ABL by fusion to an ets-related gene, TEL. Cancer Res 1995; 55: 34–38.

    CAS  PubMed  Google Scholar 

  25. Basecke J, Griesinger F, Trumper L, Brittinger G . Leukaemia- and lymphoma-associated genetic aberrations in healthy individuals. Ann Hematol 2002; 81: 64–75.

    Article  CAS  PubMed  Google Scholar 

  26. Murati A, Arnoulet C, Lafage-Pochitaloff M, Adelaide J, Derre M, Slama B et al. Dual lympho-myeloproliferative disorder in a patient with t(8;22) with BCR-FGFR1 gene fusion. Int J Oncol 2005; 26: 1485–1492.

    CAS  PubMed  Google Scholar 

  27. Demiroglu A, Steer EJ, Heath C, Taylor K, Bentley M, Allen SL et al. The t(8;22) in chronic myeloid leukaemia fuses BCR to FGFR1: transforming activity and specific inhibition of FGFR1 fusion proteins. Blood 2001; 98: 3778–3783.

    Article  CAS  PubMed  Google Scholar 

  28. Sattler M, Griffin JD . Molecular mechanisms of transformation by the BCR-ABL oncogene. Semin Hematol 2003; 40: 4–10.

    Article  CAS  PubMed  Google Scholar 

  29. Deininger M, Lehmann T, Krahl R, Hennig E, Muller C, Niederwieser D . No evidence for persistence of BCR-ABL-positive cells in patients in molecular remission after conventional allogenic transplantation for chronic myeloid leukaemia. Blood 2000; 96: 779–780.

    CAS  PubMed  Google Scholar 

  30. Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R et al. Neutrophilic-chronic myeloid leukaemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 1996; 88: 2410–2414.

    CAS  PubMed  Google Scholar 

  31. Mason DY, Pulford KA, Bischof D, Kuefer MU, Butler LH, Lamant L et al. Nucleolar localization of the nucleophosmin-anaplastic lymphoma kinase is not required for malignant transformation. Cancer Res 1998; 58: 1057–1062.

    CAS  PubMed  Google Scholar 

  32. Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG . Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 2002; 4: 529–533.

    Article  CAS  PubMed  Google Scholar 

  33. Okuda M . The role of nucleophosmin in centrosome duplication. Oncogene 2002; 21: 6170–6174.

    Article  CAS  PubMed  Google Scholar 

  34. Pulford K, Lamant L, Morris SW, Butler LH, Wood KM, Stroud D et al. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood 1997; 89: 1394–1404.

    CAS  PubMed  Google Scholar 

  35. Stoica GE, Kuo A, Powers C, Bowden ET, Sale EB, Riegel AT et al. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem 2002; 277: 35990–35998.

    Article  CAS  PubMed  Google Scholar 

  36. Lee HH, Norris A, Weiss JB, Frasch M . Jelly belly protein activates the receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature 2003; 425: 507–512.

    Article  CAS  PubMed  Google Scholar 

  37. Englund C, Loren CE, Grabbe C, Varshney GK, Deleuil F, Hallberg B et al. Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature 2003; 425: 512–516.

    Article  CAS  PubMed  Google Scholar 

  38. Duyster J, Bai RY, Morris SW . Translocations involving anaplastic lymphoma kinase (ALK). Oncogene 2001; 20: 5623–5637.

    Article  CAS  PubMed  Google Scholar 

  39. Benharroch D, Meguerian-Bedoyan Z, Lamant L, Amin C, Brugieres L, Terrier-Lacombe MJ et al. ALK-positive lymphoma: a single disease with a broad spectrum of morphology. Blood 1998; 91: 2076–2084.

    CAS  PubMed  Google Scholar 

  40. Onciu M, Behm FG, Raimondi SC, Moore S, Harwood EL, Pui CH et al. ALK-positive anaplastic large cell lymphoma with leukemic peripheral blood involvement is a clinicopathologic entity with an unfavorable prognosis. Report of three cases and review of the literature. Am J Clin Pathol 2003; 120: 617–625.

    Article  PubMed  Google Scholar 

  41. Lamant L, Pulford K, Bischof D, Morris SW, Mason DY, Delsol G et al. Expression of the ALK tyrosine kinase gene in neuroblastoma. Am J Pathol 2000; 156: 1711–1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Claesson-Welsh L . Platelet-derived growth factor receptor signals. J Biol Chem 1994; 269: 32023–32026.

    CAS  PubMed  Google Scholar 

  43. Jousset C, Carron C, Boureux A, Quang CT, Oury C, Dusanter-Fourt I et al. A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR beta oncoprotein. EMBO J 1997; 16: 69–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lamballe F, Klein R, Barbacid M . The trk family of oncogenes and neurotrophin receptors. Princess Takamatsu Symp 1991; 22: 153–170.

    CAS  PubMed  Google Scholar 

  45. Klein R, Silos-Santiago I, Smeyne RJ, Lira SA, Brambilla R, Bryant S et al. Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements. Nature 1994; 368: 249–251.

    Article  CAS  PubMed  Google Scholar 

  46. Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH . A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 1998; 18: 184–187.

    Article  CAS  PubMed  Google Scholar 

  47. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 434: 907–913.

    Article  CAS  PubMed  Google Scholar 

  48. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumourigenesis. Nature 2005; 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  49. Chiarle R, Gong JZ, Guasparri I, Pesci A, Cai J, Liu J et al. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumours. Blood 2003; 101: 1919–1927.

    Article  CAS  PubMed  Google Scholar 

  50. Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 2002; 1: 479–492.

    Article  CAS  PubMed  Google Scholar 

  51. Million RP, Van Etten RA . The Grb2 binding site is required for the induction of chronic myeloid leukaemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood 2000; 96: 664–670.

    CAS  PubMed  Google Scholar 

  52. Nieborowska-Skorska M, Slupianek A, Xue L, Zhang Q, Raghunath PN, Hoser G et al. Role of signal transducer and activator of transcription 5 in nucleophosmin/ anaplastic lymphoma kinase-mediated malignant transformation of lymphoid cells. Cancer Res 2001; 61: 6517–6523.

    CAS  PubMed  Google Scholar 

  53. Cortez D, Kadlec L, Pendergast AM . Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol 1995; 15: 5531–5541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leonard WJ, O'Shea JJ . Jaks and STATs: biological implications. Annu Rev Immunol 1998; 16: 293–322.

    Article  CAS  PubMed  Google Scholar 

  55. de Groot RP, Raaijmakers JA, Lammers JW, Jove R, Koenderman L . STAT5 activation by BCR-Abl contributes to transformation of K562 leukaemia cells. Blood 1999; 94: 1108–1112.

    CAS  PubMed  Google Scholar 

  56. Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B et al. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 1999; 189: 1229–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Spiekermann K, Pau M, Schwab R, Schmieja K, Franzrahe S, Hiddemann W . Constitutive activation of STAT3 and STAT5 is induced by leukemic fusion proteins with protein tyrosine kinase activity and is sufficient for transformation of hematopoietic precursor cells. Exp Hematol 2002; 30: 262–271.

    Article  CAS  PubMed  Google Scholar 

  58. Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD . STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood 2000; 95: 2118–2125.

    CAS  PubMed  Google Scholar 

  59. Wilbanks AM, Mahajan S, Frank DA, Druker BJ, Gilliland DG, Carroll M . TEL/PDGFbetaR fusion protein activates STAT1 and STAT5: a common mechanism for transformation by tyrosine kinase fusion proteins. Exp Hematol 2000; 28: 584–593.

    Article  CAS  PubMed  Google Scholar 

  60. Zamo A, Chiarle R, Piva R, Howes J, Fan Y, Chilosi M et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 2002; 21: 1038–1047.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Q, Raghunath PN, Xue L, Majewski M, Carpentieri DF, Odum N et al. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J Immunol 2002; 168: 466–474.

    Article  CAS  PubMed  Google Scholar 

  62. Borisch B, Yerly S, Cerato C, Schwaller J, Wacker P, Ozsahin AH et al. ALK-positive anaplastic large-cell lymphoma: strong T and B anti-tumour responses may cause hypocellular aspects of lymph nodes mimicking inflammatory lesions. Eur J Haematol 2003; 71: 243–249.

    Article  CAS  PubMed  Google Scholar 

  63. Frantsve J, Schwaller J, Sternberg DW, Kutok J, Gilliland DG . Socs-1 inhibits TEL-JAK2-mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome-mediated degradation. Mol Cell Biol 2001; 21: 3547–3557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chiarle R, Simmons WJ, Cai H, Dhall G, Zamo A, Raz R et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 2005; 11: 623–629.

    Article  CAS  PubMed  Google Scholar 

  65. Sexl V, Piekorz R, Moriggl R, Rohrer J, Brown MP, Bunting KD et al. Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of stat5. Blood 2000; 96: 2277–2283.

    CAS  PubMed  Google Scholar 

  66. Biernaux C, Loos M, Sels A, Huez G, Stryckmans P . Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 1995; 86: 3118–3122.

    CAS  PubMed  Google Scholar 

  67. Trumper L, Pfreundschuh M, Bonin FV, Daus H . Detection of the t(2;5)-associated NPM/ALK fusion cDNA in peripheral blood cells of healthy individuals. Br J Haematol 1998; 103: 1138–1144.

    Article  CAS  PubMed  Google Scholar 

  68. Ilaria Jr R . Bcr/Abl, leukemogenesis, and genomic instability: a complex partnership. Leuk Res 2002; 26: 971–973.

    Article  PubMed  Google Scholar 

  69. Voncken JW, Morris C, Pattengale P, Dennert G, Kikly C, Groffen J et al. Clonal development and karyotype evolution during leukemogenesis of BCR/ABL transgenic mice. Blood 1992; 79: 1029–1036.

    CAS  PubMed  Google Scholar 

  70. Salloukh HF, Laneuville P . Increase in mutant frequencies in mice expressing the BCR-ABL activated tyrosine kinase. Leukaemia 2000; 14: 1401–1404.

    Article  CAS  Google Scholar 

  71. Brain JM, Goodyer N, Laneuville P . Measurement of genomic instability in preleukemic P190BCR/ABL transgenic mice using inter-simple sequence repeat polymerase chain reaction. Cancer Res 2003; 63: 4895–4898.

    CAS  PubMed  Google Scholar 

  72. Brain J, Saksena A, Laneuville P . The kinase inhibitor STI571 reverses the Bcr-Abl induced point mutation frequencies observed in pre-leukemic P190(Bcr-Abl) transgenic mice. Leuk Res 2002; 26: 1011–1016.

    Article  CAS  PubMed  Google Scholar 

  73. Canitrot Y, Lautier D, Laurent G, Frechet M, Ahmed A, Turhan AG et al. Mutator phenotype of BCR-ABL transfected Ba/F3 cell lines and its association with enhanced expression of DNA polymerase beta. Oncogene 1999; 18: 2676–2680.

    Article  CAS  PubMed  Google Scholar 

  74. Laneuville P, Sun G, Timm M, Vekemans M . Clonal evolution in a myeloid cell line transformed to interleukin-3 independent growth by retroviral transduction and expression of p210bcr/abl. Blood 1992; 80: 1788–1797.

    CAS  PubMed  Google Scholar 

  75. Laneuville P, Timm M, Hudson AT . bcr/abl expression in 32D cl3(G) cells inhibits apoptosis induced by protein tyrosine kinase inhibitors. Cancer Res 1994; 54: 1360–1366.

    CAS  PubMed  Google Scholar 

  76. Dierov J, Dierova R, Carroll M . BCR/ABL translocates to the nucleus and disrupts an ATR-dependent intra-S phase checkpoint. Cancer Cell 2004; 5: 275–285.

    Article  CAS  PubMed  Google Scholar 

  77. Yu Q, Brain J, Laneuville P, Osmond DG . Suppressed apoptosis of pre-B cells in bone marrow of pre-leukemic p190bcr/abl transgenic mice. Leukaemia 2001; 15: 819–827.

    Article  CAS  Google Scholar 

  78. Deininger MW, Holyoake TL . Can we afford to let sleeping dogs lie? Blood 2005; 105: 1840–1841.

    Article  CAS  PubMed  Google Scholar 

  79. Kuribara R, Honda H, Matsui H, Shinjyo T, Inukai T, Sugita K et al. Roles of Bim in apoptosis of normal and Bcr-Abl-expressing hematopoietic progenitors. Mol Cell Biol 2004; 24: 6172–6183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Slupianek A, Hoser G, Majsterek I, Bronisz A, Malecki M, Blasiak J et al. Fusion tyrosine kinases induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of G(2)/M phase, and protection from apoptosis. Mol Cell Biol 2002; 22: 4189–4201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu Q, Schwaller J, Kutok J, Cain D, Aster JC, Williams IR et al. Signal transduction and transforming properties of the TEL-TRKC fusions associated with t(12;15)(p13;q25) in congenital fibrosarcoma and acute myelogenous leukaemia. EMBO J 2000; 19: 1827–1838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stoklosa T, Slupianek A, Datta M, Nieborowska-Skorska M, Nowicki MO, Koptyra M et al. BCR/ABL recruits p53 tumour suppressor protein to induce drug resistance. Cell Cycle 2004; 3: 1463–1472.

    Article  CAS  PubMed  Google Scholar 

  83. Takeda N, Shibuya M, Maru Y . The BCR-ABL oncoprotein potentially interacts with the xeroderma pigmentosum group B protein. Proc Natl Acad Sci USA 1999; 96: 203–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sattler M, Verma S, Shrikhande G, Byrne CH, Pride YB, Winkler T et al. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem 2000; 275: 24273–24278.

    Article  CAS  PubMed  Google Scholar 

  85. Tai YC, Kim LH, Peh SC . Common ALK gene rearrangement in Asian CD30+ anaplastic large cell lymphoma: an immunohistochemical and fluorescence in situ hybridisation (FISH) study on paraffin-embedded tissue. Pathology 2003; 35: 436–443.

    Article  CAS  PubMed  Google Scholar 

  86. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  CAS  PubMed  Google Scholar 

  87. Deininger MW . Basic science going clinical: molecularly targeted therapy of chronic myelogenous leukaemia. J Cancer Res Clin Oncol 2004; 130: 59–72.

    Article  CAS  PubMed  Google Scholar 

  88. Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J . Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 2000; 96: 4319–4327.

    CAS  PubMed  Google Scholar 

  89. Slupianek A, Nieborowska-Skorska M, Hoser G, Morrione A, Majewski M, Xue L et al. Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res 2001; 61: 2194–2199.

    CAS  PubMed  Google Scholar 

  90. Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 1997; 16: 6151–6161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nguyen MH, Ho JM, Beattie BK, Barber DL . TEL-JAK2 mediates constitutive activation of the phosphatidylinositol 3′-kinase/protein kinase B signaling pathway. J Biol Chem 2001; 276: 32704–32713.

    Article  CAS  PubMed  Google Scholar 

  92. Sattler M, Salgia R, Okuda K, Uemura N, Durstin MA, Pisick E et al. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3′ kinase pathway. Oncogene 1996; 12: 839–846.

    CAS  PubMed  Google Scholar 

  93. Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ et al. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukaemia produces a novel fusion gene, NPM-MLF1. Oncogene 1996; 12: 265–275.

    CAS  PubMed  Google Scholar 

  94. Dierov J, Xu Q, Dierova R, Carroll M . TEL/platelet-derived growth factor receptor beta activates phosphatidylinositol 3 (PI3) kinase and requires PI3 kinase to regulate the cell cycle. Blood 2002; 99: 1758–1765.

    Article  CAS  PubMed  Google Scholar 

  95. Boissel N, Renneville A, Biggio V, Philippe N, Thomas X, Cayuela JM et al. Prevalence, clinical profile and prognosis of NPM mutations in AML with normal karyotype. Blood 2005; 106: 3618–3620.

    Article  CAS  PubMed  Google Scholar 

  96. Sanchez-Garcia I, Martin-Zanca D . Regulation of Bcl-2 gene expression by BCR-ABL is mediated by Ras. J Mol Biol 1997; 267: 225–228.

    Article  CAS  PubMed  Google Scholar 

  97. Coluccia AM, Perego S, Cleris L, Gunby RH, Passoni L, Marchesi E et al. Bcl-XL down-regulation suppresses the tumourigenic potential of NPM/ALK in vitro and in vivo. Blood 2004; 103: 2787–2794.

    Article  CAS  PubMed  Google Scholar 

  98. Sherr CJ, Roberts JM . CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  99. Gesbert F, Sellers WR, Signoretti S, Loda M, Griffin JD . BCR/ABL regulates expression of the cyclin-dependent kinase inhibitor p27Kip1 through the phosphatidylinositol 3-Kinase/AKT pathway. J Biol Chem 2000; 275: 39223–39230.

    Article  CAS  PubMed  Google Scholar 

  100. Gu TL, Tothova Z, Scheijen B, Griffin JD, Gilliland DG, Sternberg DW . NPM-ALK fusion kinase of anaplastic large-cell lymphoma regulates survival and proliferative signaling through modulation of FOXO3a. Blood 2004; 103: 4622–4629.

    Article  CAS  PubMed  Google Scholar 

  101. Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol 2000; 20: 9138–9148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Amin HM, Medeiros LJ, Ma Y, Feretzaki M, Das P, Leventaki V et al. Inhibition of JAK3 induces apoptosis and decreases anaplastic lymphoma kinase activity in anaplastic large cell lymphoma. Oncogene 2003; 22: 5399–5407.

    Article  CAS  PubMed  Google Scholar 

  103. Ilaria Jr RL, Van Etten RA . P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 1996; 271: 31704–31710.

    Article  CAS  PubMed  Google Scholar 

  104. Danial NN, Rothman P . JAK-STAT signaling activated by Abl oncogenes. Oncogene 2000; 19: 2523–2531.

    Article  CAS  PubMed  Google Scholar 

  105. Lacronique V, Boureux A, Monni R, Dumon S, Mauchauffe M, Mayeux P et al. Transforming properties of chimeric TEL-JAK proteins in Ba/F3 cells. Blood 2000; 95: 2076–2083.

    CAS  PubMed  Google Scholar 

  106. Ho JM, Beattie BK, Squire JA, Frank DA, Barber DL . Fusion of the ets transcription factor TEL to Jak2 results in constitutive Jak-Stat signaling. Blood 1999; 93: 4354–4364.

    CAS  PubMed  Google Scholar 

  107. Carron C, Cormier F, Janin A, Lacronique V, Giovannini M, Daniel MT et al. TEL-JAK2 transgenic mice develop T-cell leukaemia. Blood 2000; 95: 3891–3899.

    CAS  PubMed  Google Scholar 

  108. Horita M, Andreu EJ, Benito A, Arbona C, Sanz C, Benet I et al. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukaemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J Exp Med 2000; 191: 977–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Stancovski I, Baltimore D . NF-kappaB activation: the I kappaB kinase revealed? Cell 1997; 91: 299–302.

    Article  CAS  PubMed  Google Scholar 

  110. Hernandez L, Bea S, Bellosillo B, Pinyol M, Falini B, Carbone A et al. Diversity of genomic breakpoints in TFG-ALK translocations in anaplastic large cell lymphomas: identification of a new TFG-ALK(XL) chimeric gene with transforming activity. Am J Pathol 2002; 160: 1487–1494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Besancon F, Atfi A, Gespach C, Cayre YE, Bourgeade MF . Evidence for a role of NF-kappaB in the survival of hematopoietic cells mediated by interleukin 3 and the oncogenic TEL/platelet-derived growth factor receptor beta fusion protein. Proc Natl Acad Sci USA 1998; 95: 8081–8086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hamdane M, David-Cordonnier MH, D'Halluin JC . Activation of p65 NF-kappaB protein by p210BCR-ABL in a myeloid cell line (P210BCR-ABL activates p65 NF-kappaB). Oncogene 1997; 15: 2267–2275.

    Article  CAS  PubMed  Google Scholar 

  113. Horie R, Watanabe M, Ishida T, Koiwa T, Aizawa S, Itoh K et al. The NPM-ALK oncoprotein abrogates CD30 signaling and constitutive NF-kappaB activation in anaplastic large cell lymphoma. Cancer Cell 2004; 5: 353–364.

    Article  CAS  PubMed  Google Scholar 

  114. Nishikori M, Ohno H, Haga H, Uchiyama T . Stimulation of CD30 in anaplastic large cell lymphoma leads to production of nuclear factor-kappaB p52, which is associated with hyperphosphorylated Bcl-3. Cancer Sci 2005; 96: 487–497.

    Article  CAS  PubMed  Google Scholar 

  115. Mathas S, Hinz M, Anagnostopoulos I, Krappmann D, Lietz A, Jundt F et al. Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappa B. EMBO J 2002; 21: 4104–4113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993; 75: 175–185.

    Article  CAS  PubMed  Google Scholar 

  117. Fujimoto J, Shiota M, Iwahara T, Seki N, Satoh H, Mori S et al. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc Natl Acad Sci USA 1996; 93: 4181–4186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Baldari CT, Pelicci G, Di Somma MM, Milia E, Giuli S, Pelicci PG et al. Inhibition of CD4/p56lck signaling by a dominant negative mutant of the Shc adaptor protein. Oncogene 1995; 10: 1141–1147.

    CAS  PubMed  Google Scholar 

  119. Pronk GJ, Bos JL . The role of p21ras in receptor tyrosine kinase signalling. Biochim Biophys Acta 1994; 1198: 131–147.

    PubMed  Google Scholar 

  120. Engelberg D . Stress-activated protein kinases-tumour suppressors or tumour initiators? Semin Cancer Biol 2004; 14: 271–282.

    Article  CAS  PubMed  Google Scholar 

  121. Cortez D, Reuther G, Pendergast AM . The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene 1997; 15: 2333–2342.

    Article  CAS  PubMed  Google Scholar 

  122. Greenland C, Touriol C, Chevillard G, Morris SW, Bai R, Duyster J et al. Expression of the oncogenic NPM-ALK chimeric protein in human lymphoid T-cells inhibits drug-induced, but not Fas-induced apoptosis. Oncogene 2001; 20: 7386–7397.

    Article  CAS  PubMed  Google Scholar 

  123. Atfi A, Prunier C, Mazars A, Defachelles AS, Cayre Y, Gespach C et al. The oncogenic TEL/PDGFR beta fusion protein induces cell death through JNK/SAPK pathway. Oncogene 1999; 18: 3878–3885.

    Article  CAS  PubMed  Google Scholar 

  124. Turner SD, Tooze R, Maclennan K, Alexander DR . Vav-promoter regulated oncogenic fusion protein NPM-ALK in transgenic mice causes B-cell lymphomas with hyperactive Jun kinase. Oncogene 2003; 22: 7750–7761.

    Article  CAS  PubMed  Google Scholar 

  125. Kabarowski JH, Allen PB, Wiedemann LM . A temperature sensitive p210 BCR-ABL mutant defines the primary consequences of BCR-ABL tyrosine kinase expression in growth factor dependent cells. EMBO J 1994; 13: 5887–5895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gu TL, Tothova Z, Scheijen B, Griffin JD, Gilliland DG, Sternberg DW . The NPM-ALK fusion kinase of anaplastic large cell lymphoma regulates survival and proliferative signaling through modulation of FOXO3a. Blood 2004; 103: 4622–4629.

    Article  CAS  PubMed  Google Scholar 

  127. Mandanas RA, Leibowitz DS, Gharehbaghi K, Tauchi T, Burgess GS, Miyazawa K et al. Role of p21 RAS in p210 bcr-abl transformation of murine myeloid cells. Blood 1993; 82: 1838–1847.

    CAS  PubMed  Google Scholar 

  128. Eferl R, Wagner EF . AP-1: a double-edged sword in tumourigenesis. Nat Rev Cancer 2003; 3: 859–868.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Leukaemia Research Fund, the Leukaemia and Lymphoma Society, and the British Biological Sciences Research Council for their financial support, and also apologise to those authors whose work has not been cited due to space constraints. SDT is supported by funding from the Leukaemia Research Fund (UK) and DRA from the Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S D Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, S., Alexander, D. Fusion tyrosine kinase mediated signalling pathways in the transformation of haematopoietic cells. Leukemia 20, 572–582 (2006). https://doi.org/10.1038/sj.leu.2404125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404125

Keywords

This article is cited by

Search

Quick links