Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Apoptosis

Mechanisms of apoptosis-induction by rottlerin: therapeutic implications for B-CLL

Abstract

Constitutively activated signaling pathways contribute to the apoptosis-defect of B-CLL cells. Protein kinase C-δ is a permanently activated kinase and a putative downstream target of phosphatidylinositol-3 kinase in B-CLL. Blockade of protein kinase C-δ (PKC-δ) by the highly specific inhibitor rottlerin induces apoptosis in chronic lymphocytic leukaemia (CLL) cells. By co-culturing bone marrow stromal and CLL cells, we determined that the proapoptotic effect of rottlerin is not abolished in the presence of survival factors, indicating that a targeted therapy against PKC-δ might be a powerful approach for the treatment of CLL patients. The downstream events following rottlerin treatment engage mitochondrial and non-mitochondrial pathways and ultimately activate caspases that execute the apoptotic cell death. Herein we report that the inhibition of PKC-δ decreases the expression of the important antiapoptotic proteins Mcl-1 and XIAP accompanied by a loss of the mitochondrial membrane potential Δψ. In addition, we discovered that ZAP-70-expressing cells are significantly more susceptible to rottlerin-induced cell death than ZAP-70 negative cells. We finally observed that rottlerin can augment cell toxicity induced by standard chemotherapeutic drugs. Conclusively, PKC-δ is a promising new target in the combat against CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351: 337–345.

    Article  CAS  PubMed  Google Scholar 

  2. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 235–242.

    Article  CAS  PubMed  Google Scholar 

  3. Caligaris-Cappio F, Hamblin TJ . B-cell chronic lymphocytic leukemia: a bird of a different feather. J Clin Oncol 1999; 17: 399–408.

    Article  CAS  PubMed  Google Scholar 

  4. Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ . Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 2000; 164: 2200–2206.

    Article  CAS  PubMed  Google Scholar 

  5. Ringshausen I, Schneller F, Bogner C, Hipp S, Duyster J, Peschel C et al. Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL: association with protein kinase Cdelta. Blood 2002; 100: 3741–3748.

    Article  CAS  PubMed  Google Scholar 

  6. Bogner C, Schneller F, Hipp S, Ringshausen I, Peschel C, Decker T . Cycling B-CLL cells are highly susceptible to inhibition of the proteasome: involvement of p27, early D-type cyclins, Bax, and caspase-dependent and -independent pathways. Exp Hematol 2003; 31: 218–225.

    Article  CAS  PubMed  Google Scholar 

  7. Napolitano MJ, Shain DH . Quantitating adenylate nucleotides in diverse organisms. J Biochem Biophys Methods 2005; 63: 69–77.

    Article  CAS  PubMed  Google Scholar 

  8. Mackman N, Brand K, Edgington TS . Lipopolysaccharide-mediated transcriptional activation of the human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor kappa B binding sites. J Exp Med 1991; 174: 1517–1526.

    Article  CAS  PubMed  Google Scholar 

  9. Panayiotidis P, Jones D, Ganeshaguru K, Foroni L, Hoffbrand AV . Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol 1996; 92: 97–103.

    Article  CAS  PubMed  Google Scholar 

  10. Caligaris-Cappio F . Role of the microenvironment in chronic lymphocytic leukaemia. Br J Haematol 2003; 123: 380–388.

    Article  PubMed  Google Scholar 

  11. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood 1998; 91: 3379–3389.

    CAS  PubMed  Google Scholar 

  12. Reed JC . Bcl-2: prevention of apoptosis as a mechanism of drug resistance. Hematol Oncol Clin North Am 1995; 9: 451–473.

    Article  CAS  PubMed  Google Scholar 

  13. Deveraux QL, Takahashi R, Salvesen GS, Reed JC . X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997; 388: 300–304.

    Article  CAS  PubMed  Google Scholar 

  14. Kitada S, Zapata JM, Andreeff M, Reed JC . Protein kinase inhibitors flavopiridol and 7-hydroxy-staurosporine down-regulate antiapoptosis proteins in B-cell chronic lymphocytic leukemia. Blood 2000; 96: 393–397.

    CAS  PubMed  Google Scholar 

  15. Soltoff SP . Rottlerin is a mitochondrial uncoupler that decreases cellular ATP levels and indirectly blocks protein kinase Cdelta tyrosine phosphorylation. J Biol Chem 2001; 276: 37986–37992.

    CAS  PubMed  Google Scholar 

  16. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  PubMed  Google Scholar 

  17. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–1775.

    Article  CAS  PubMed  Google Scholar 

  18. Parekh D, Ziegler W, Yonezawa K, Hara K, Parker PJ . Mammalian TOR controls one of two kinase pathways acting upon nPKCdelta and nPKCepsilon. J Biol Chem 1999; 274: 34758–34764.

    Article  CAS  PubMed  Google Scholar 

  19. Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ . Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 1998; 281: 2042–2045.

    Article  CAS  PubMed  Google Scholar 

  20. Li W, Zhang J, Bottaro DP, Pierce JH . Identification of serine 643 of protein kinase C-delta as an important autophosphorylation site for its enzymatic activity. J Biol Chem 1997; 272: 24550–24555.

    Article  CAS  PubMed  Google Scholar 

  21. Krappmann D, Patke A, Heissmeyer V, Scheidereit C . B-cell receptor- and phorbol ester-induced NF-kappaB and c-Jun N-terminal kinase activation in B cells requires novel protein kinase C's. Mol Cell Biol 2001; 21: 6640–6650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Page K, Li J, Zhou L, Iasvovskaia S, Corbit KC, Soh JW et al. Regulation of airway epithelial cell NF-kappa B-dependent gene expression by protein kinase C delta. J Immunol 2003; 170: 5681–5689.

    Article  CAS  PubMed  Google Scholar 

  23. Minami T, Abid MR, Zhang J, King G, Kodama T, Aird WC . Thrombin stimulation of vascular adhesion molecule-1 in endothelial cells is mediated by protein kinase C (PKC)-delta-NF-kappa B and PKC-zeta-GATA signaling pathways. J Biol Chem 2003; 278: 6976–6984.

    Article  CAS  PubMed  Google Scholar 

  24. Gschwendt M, Muller HJ, Kielbassa K, Zang R, Kittstein W, Rincke G et al. Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun 1994; 199: 93–98.

    Article  CAS  PubMed  Google Scholar 

  25. Chintalgattu V, Katwa LC . Role of protein kinase Cdelta in endothelin-induced type I collagen expression in cardiac myofibroblasts isolated from the site of myocardial infarction. J Pharmacol Exp Ther 2004; 311: 691–699.

    Article  CAS  PubMed  Google Scholar 

  26. Tseng CP, Kim YJ, Kumar R, Verma AK . Involvement of protein kinase C in the transcriptional regulation of 12-O-tetradecanoylphorbol-13-acetate-inducible genes modulated by AP-1 or non-AP-1 transacting factors. Carcinogenesis 1994; 15: 707–711.

    Article  CAS  PubMed  Google Scholar 

  27. Iglesias-Serret D, Pique M, Gil J, Pons G, Lopez JM . Transcriptional and translational control of Mcl-1 during apoptosis. Arch Biochem Biophys 2003; 417: 141–152.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Q, Wang X, Evers BM . Induction of cIAP-2 in human colon cancer cells through PKC delta/NF-kappa B. J Biol Chem 2003; 278: 51091–51099.

    Article  CAS  PubMed  Google Scholar 

  29. Aas T, Borresen AL, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug JE et al. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 1996; 2: 811–814.

    Article  CAS  PubMed  Google Scholar 

  30. Gandhi V, Huang P, Plunkett W . Fludarabine inhibits DNA replication: a rationale for its use in the treatment of acute leukemias. Leuk Lymphoma 1994; 14 (Suppl 2): 3–9.

    Article  PubMed  Google Scholar 

  31. Vilpo J, Vilpo L . Selective toxicity of vincristine against chronic lymphocytic leukaemia in vitro. The Tampere CLL Group. Lancet 1996; 347: 1491–1492.

    Article  CAS  PubMed  Google Scholar 

  32. Malik IA, Costea NV . Verapamil preferentially potentiates in vitro cytotoxicity of vincristine on malignant lymphoid cells. Hematol Oncol 1992; 10: 225–231.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the Technical university of Munich (KKF 15-00) and a grant from the Deutsche Forschungsgemeinschaft DE 771.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Ringshausen.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu/)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ringshausen, I., Oelsner, M., Weick, K. et al. Mechanisms of apoptosis-induction by rottlerin: therapeutic implications for B-CLL. Leukemia 20, 514–520 (2006). https://doi.org/10.1038/sj.leu.2404113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404113

Keywords

This article is cited by

Search

Quick links