Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia and B Cells

High Mda-7 expression promotes malignant cell survival and p38 MAP kinase activation in chronic lymphocytic leukemia

Abstract

Chronic lymphocytic leukemia (CLL)-B-cells are quiescent differentiated cells that produce interleukin (IL)-10 and accumulate due to resistance to apoptosis. The mechanisms underlying such resistance are poorly understood. Herein we show that all CLL B-cells tested (30/30) display high mRNA and protein expression of the tumor suppressor Mda-7/IL-24, an IL-10 family member, in comparison to normal B cells. A downstream Mda-7 signaling target, p38 mitogen-activated protein kinase (MAPK) was highly phosphorylated in all CLL cells but not in normal B-cells. Mda-7 expression and p38 MAPK phosphorylation diminished in culture and the latter could be reinduced by recombinant (r)-IL-24 or LPS and Mda-7 transfection. Mda-7/IL-24 siRNA specifically inhibited p38 MAPK phosphorylation in CLL without affecting p38 MAPK, bcl2, or Lyn expression, further demonstrating the direct role of Mda-7/IL-24 in p38 MAPK activation. Both pharmacological inhibition of p38 MAPK and Mda-7 silencing augmented spontaneous apoptosis by three-fold in CLL cells cultured in autologous serum, which was reversed by LPS and r-IL-24. We established the role of p38 MAPK in CLL cell survival and demonstrated a paradoxical effect, whereby Mda-7 and IL-24, inducers of apoptosis in diverse cancer cells, promote the survival of CLL B-cells through p38 MAPK activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rozman C, Montserrat E . Chronic lymphocytic leukemia. N Engl J Med 1995; 333: 1052–1057; Erratum in: N Engl J Med 1995; 333:1515.

    Article  CAS  PubMed  Google Scholar 

  2. Hamblin TJ, Oscier DG . Chronic lymphocytic leukaemia: the nature of the leukaemic cell. Blood Rev 1997; 11: 119–128.

    Article  CAS  PubMed  Google Scholar 

  3. Dameshek W . Chronic lymphocytic leukemia: an accumulative disease of immunologically incompetent lymphocytes. Blood 1967; 29 (Suppl): 566–584.

    Google Scholar 

  4. Fu SM, Chiorazzi N, Kunkel HG . Differentiation capacity and other properties of leukemic cells of chronic lymphocytic leukemia. Immunol Rev 1979; 48: 23–44.

    Article  CAS  PubMed  Google Scholar 

  5. Perri RT . Impaired expression of cell surface receptors for B cell growh factors by chronic lymphocytic leukemia B cells. Blood 1986; 67: 943–948.

    CAS  PubMed  Google Scholar 

  6. Lankester AC, van Schijndel GM, van der Schoot CE, van Oers MH, van Noesel CJ, van Lier RA . Antigen Receptor nonresponsiveness in chronic lymphocytic leukemia cells. Blood 1995; 86: 1090–1097.

    CAS  PubMed  Google Scholar 

  7. Zimmerman TS, Godwin HA, Perry S . Studies of leukocyte kinetics in chronic lymphocytic leukemia. Blood 1968; 31: 277–291.

    CAS  PubMed  Google Scholar 

  8. Decker T, Schneller F, Hipp S, Miething C, Jahn T, Duyster J et al. Cell cycle progression of chronic lymphocytic leukemia cells is controlled by cyclin D2, cyclin D3, cyclin-dependent kinase (cdk) 4 and the cdk inhibitor p27. Leukemia 2002; 16: 327–334.

    Article  CAS  PubMed  Google Scholar 

  9. Stevenson FK, Caligaris-Cappio F . Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood 2004; 103: 4389–4395.

    Article  CAS  PubMed  Google Scholar 

  10. Sanhes L, Tang R, Delmer A, DeCaprio JA, Ajchenbaum-Cymbalista F . Fludarabine-induced apoptosis of B chronic lymphocytic leukemia cells includes early cleavage of 27kip1 by caspases. Leukemia 2003; 17: 1104–1111.

    Article  CAS  PubMed  Google Scholar 

  11. Damle RN, Ghiotto F, Valetto A, Albesiano E, Fais F, Yan XJ et al. B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood 2002; 99: 4087–4093.

    Article  CAS  PubMed  Google Scholar 

  12. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  PubMed  Google Scholar 

  13. Bell SE, Goodnow CC . A selective defect in IgM antigen receptor synthesis and transport causes loss of cell surface IgM expression on tolerant B lymphocytes. EMBO J 1994; 13: 816–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hippen KL, Tze LE, Behrens TW . CD5 maintains tolerance in anergic B cells. J Exp Med 2000; 191: 883–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gary-Gouy H, Harriague J, Bismuth G, Platzer C, Schmitt C, Dalloul AH . Human CD5 promotes B-cell survival through stimulation of autocrine IL10 production. Blood 2002; 100: 4537–4543.

    Article  CAS  PubMed  Google Scholar 

  16. Bikah G, Carey J, Ciallella JR, Tarakhovsky A, Bondada S . CD5-mediated negative regulation of antigen receptor-induced growth signals in B-1 B cells. Science 1996; 274: 1906–1909.

    Article  CAS  PubMed  Google Scholar 

  17. Gary-Gouy H, Harriague J, Dalloul A, Donnadieu E, Bismuth G . CD5-negative regulation of B Cell Receptor signaling pathways originates from tyrosine residue Y 429 outside an immunoreceptor tyrosine-based inhibitory motif. J Immunol 2002; 168: 232–239.

    Article  CAS  PubMed  Google Scholar 

  18. Bauch A, Campbell KS, Reth M . Interaction of the CD5 cytoplasmic domain with the Ca2+/calmodulin-dependent kinase II delta. Eur J Immunol 1998; 28: 2167–2177.

    Article  CAS  PubMed  Google Scholar 

  19. Raman C, Kuo A, Deshane J, Litchfield DW, Kimberly RP . Regulation of Casein Kinase 2 by direct interaction with cell surface receptor CD5. J Biol Chem 1998; 273: 19183–19189.

    Article  CAS  PubMed  Google Scholar 

  20. Finke J, Ternes P, Lange W, Mertelsmann R, Dolken G . Expression of interleukin 10 in B lymphocytes of different origin. Leukemia 1993; 11: 1852–1857.

    Google Scholar 

  21. Ramachandra S, Metcalf RA, Fredrickson T, Marti GE, Raveche E . Requirement for increased IL-10 in the development of B-1 lymphoproliferative disease in a murine model of CLL. J Clin Invest 1996; 98: 1788–1793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fayad L, Keating MJ, Reuben JM, O’Brien S, Lee BN, Lerner S et al. Interleukin-6 and interleukin-10 levels in chronic lymphocytic leukemia: correlation with phenotypic characteristics and outcome. Blood 2001; 97: 256–263.

    Article  CAS  PubMed  Google Scholar 

  23. Renauld JC . Clas II cytokine receptors and their ligands: key antiviral and inflammatory modulators. Nat Rev Immunol 2003; 3: 667–676.

    Article  CAS  PubMed  Google Scholar 

  24. Caudell EG, Mumm JB, Poindexter N, Ekmekcioglu S, Mhashilkar AM, Yang XH et al. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. J Immunol 2002; 168: 6041–6046.

    Article  CAS  PubMed  Google Scholar 

  25. Sarkar D, Su Z-Z, Lebedeva I V, Suane M, Gopalkrishnan RV, Dent P et al. mda-7 (IL-24): signaling and functional roles. Biotechniques 2002; 33: 530–539.

    Article  Google Scholar 

  26. Wang M, Tan Z, Zhang R, Kotenko SV, Liang P . IL24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J Biol Chem 2002; 277: 7341–7347.

    Article  CAS  PubMed  Google Scholar 

  27. Sarkar D, Su ZZ, Lebedeva IV, Sauane M, Gopalkrishnan RV, Valerie K et al. mda-7 (IL-24) mediates selective apoptosis in human melanoma cells by inducing coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci USA 2002; 99: 10054–10059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Han J, Lee JD, Bibbs L, Ulevitch RJ . A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 1994; 265: 808–811.

    Article  CAS  PubMed  Google Scholar 

  29. Mentz F, Merle-Beral H, Dalloul A . Theophylline-induced B-CLL apoptosis is partly dependent on cyclic AMP production but independent of CD38 expression and endogenous IL-10 production. Leukemia 1999; 13: 78–84.

    Article  CAS  PubMed  Google Scholar 

  30. Orsini E, Guarini A, Chiaretti S, Mauro FR, Foa R . The circulating dendritic cell compartment in patients with chronic lymphocytic leukemia is severely defective and unable to stimulate an effective T-cell response. Cancer Res 2003; 63: 4497–4506.

    CAS  PubMed  Google Scholar 

  31. Mendelson KG, Contois LR, Tevosian SG, Davis RJ, Paulson KE . Independent regulation of JNK/p38 mitogen-activated protein kinases by metabolic oxidative stress in the liver. Proc Natl Acad Sci USA 1996; 93: 12908–12913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ringshausen I, Dechow T, Schneller F, Weick K, Oelsner M, Peschel C et al. Constitutive activation of the MAPkinase p38 is critical for MMP-9 production and survival of B-CLL cells on bone marrow stromal cells. Leukemia 2004; 18: 1964–1970.

    Article  CAS  PubMed  Google Scholar 

  33. Kishi H, Nakagawa K, Matsumoto M, Suga M, Ando M, Taya Y et al. shock induces G1 arrest through p53 phosphorylation at ser33 by activating p38MAPK without phosphorylation at ser15 and ser20. J Biol Chem 2001; 276: 39115–39122.

    Article  CAS  PubMed  Google Scholar 

  34. Ge B, Gram H, Di Padova F, Huang B, New L, Ulevitch RJ et al. activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science 2002; 295: 1291–1294.

    Article  CAS  PubMed  Google Scholar 

  35. Ohkusu-Tsukada K, Tominaga N, Udono H, yui K . Regulation of the maintenance of peripheral T-cell anergy by TAB1-mediated p38 alpha activation. Mol Cell Biol 2004; 24: 6957–6966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pers JO, Berthou C, Porakishvili N, Burdjanadze M, Le Calvez G, Abgrall JF et al. CD5-induced apoptosis of B cells in some patients with chronic lymphocytic leukemia. Leukemia 2002; 16: 44–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Françoise Gaudin and Hervé Strub are acknowledged for technical help. This work was supported by two grants from the ‘Association de Recherche contre le Cancer’, ARC, and SIDACTION.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Dalloul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sainz-Perez, A., Gary-Gouy, H., Portier, A. et al. High Mda-7 expression promotes malignant cell survival and p38 MAP kinase activation in chronic lymphocytic leukemia. Leukemia 20, 498–504 (2006). https://doi.org/10.1038/sj.leu.2404073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404073

Keywords

This article is cited by

Search

Quick links