Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Acute Non-Lymphocytic Leukemia (ANLL)

TNFα stimulates NKG2D-mediated lytic activity of acute myeloid leukemic cells

Abstract

The mechanism by which leukemic cells interfere with normal hematopoiesis remains unclear. We show here that, whereas the leukemic KG1a cells are naturally devoid from cellular cytotoxicity, once activated by TNFα, they display cytolytic activity toward various cellular targets including CFU-GM. This mechanism is dependent on stimulation of the granzyme B/perforin system. In addition, KG1a cells expressed the NKG2D receptor and its signal-transducing adaptator DAP 10, which were functional as confirmed by redirected lysis experiments. Interestingly, flow cytometry analysis of 20 samples of patients with acute myeloid leukemia (AML) (FAB M0–M5) revealed the expression of NKG2D (40%) and other natural cytotoxicity receptors (40% for NKp30, 74% for NKp44, 39% for NKp46) by a pool >15% of leukemic cells. Furthermore, CD34+ hematopoietic progenitors undergoing granulomonocytic differentiation expressed NKG2D ligands. Altogether, we propose a model in which, upon stimulation by TNFα, leukemic cells may exert cytotoxicity against myeloid progenitors. This finding may have important clinical implications in the context of diseases characterized by TNFα accumulation, such as AML or myelodisplasic syndromes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Yoshida Y . Hypothesis: apoptosis may be the mechanism responsible for the premature intramedullary cell death in the myelodysplastic syndrome. Leukemia 1993; 7: 144–146.

    CAS  PubMed  Google Scholar 

  2. Raza A, Gezer S, Mundle S, Gao XZ, Alvi S, Borok R et al. Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood 1995; 86: 268–276.

    CAS  PubMed  Google Scholar 

  3. Bryder D, Ramsfjell V, Dybeda I, Theilgaard-Monch K, Hogerkorp CM, Adolfsson J et al. Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation. J Exp Med 2001; 194: 941–952.

    Article  CAS  Google Scholar 

  4. Raza A, Gregory SA, Preisler HD . The myelodysplastic syndromes in 1996: complex stem cell disorders confounded by dual actions of cytokines. Leuk Res 1996; 20: 881–890.

    Article  CAS  Google Scholar 

  5. Raza A, Mundle S, Shetty V, Alvi S, Chopra H, Span L et al. Novel insights into the biology of myelodysplastic syndromes: excessive apoptosis and the role of cytokines. Int J Hematol 1996; 63: 265–278.

    Article  CAS  Google Scholar 

  6. Kitagawa M, Saito I, Kuwata T, Yoshida S, Yamaguchi S, Takahashi M et al. Overexpression of tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients with myelodysplastic syndromes. Leukemia 1997; 11: 2049–2054.

    Article  CAS  Google Scholar 

  7. Plo I, Lautier D, Levade T, Sekouri H, Jaffrezou JP, Laurent G et al. Phosphatidylcholine-specific phospholipase C and phospholipase D are respectively implicated in mitogen-activated protein kinase and nuclear factor kappaB activation in tumour-necrosis-factor-alpha-treated immature acute-myeloid-leukaemia cells. Biochem J 2000; 351: 459–467.

    Article  CAS  Google Scholar 

  8. Tien HF, Wang CH . CD7 positive hematopoietic progenitors and acute myeloid leukemia and other minimally differentiated leukemia. Leuk Lymphoma 1998; 31: 93–98.

    Article  CAS  Google Scholar 

  9. Graf M, Reif S, Hecht K, Pelka-Fleischer R, Kroell T, Pfister K et al. High expression of costimulatory molecules correlates with low relapse-free survival probability in acute myeloid leukemia (AML). Ann Hematol 2005; 84: 287–297.

    Article  CAS  Google Scholar 

  10. Raspadori D, Damiani D, Michieli M, Stocchi R, Gentili S, Gozzetti A et al. CD56 and PGP expression in acute myeloid leukemia: impact on clinical outcome. Haematologica 2002; 87: 1135–1140.

    CAS  PubMed  Google Scholar 

  11. Sconocchia G, Fujiwara H, Rezvani K, Keyvanfar K, El Ouriaghli F, Grube M et al. G-CSF-mobilized CD34+ cells cultured in interleukin-2 and stem cell factor generate a phenotypically novel monocyte. J Leukoc Biol 2004; 76: 1214–1219.

    Article  CAS  Google Scholar 

  12. Kojima H, Bai A, Mukai HY, Hori M, Komeno T, Hasegawa Y et al. Chronic myelomonocytic leukemia derived from a possible common progenitor of monocytes and natural killer cells. Leuk Lymphoma 2000; 37: 617–621.

    Article  CAS  Google Scholar 

  13. Morita Y, Matsuda M, Hanamoto H, Shimada T, Tatsumi Y, Maeda Y et al. A perforin/granzyme-positive MDS-derived T cell line, K2-MDS, induces apoptosis in CD34+ cells through the fractalkine–CX3CR1 system. Clin Immunol 2004; 113: 109–116.

    Article  CAS  Google Scholar 

  14. Bruno AP, Lautier D, d'Orgeix AT, Laurent G, Quillet-Mary A . Acute myeloblastic leukemic cells acquire cellular cytotoxicity under genotoxic stress: implication of granzyme B and perforin. Blood 2000; 96: 1914–1920.

    CAS  PubMed  Google Scholar 

  15. Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 2001; 19: 197–223.

    Article  CAS  Google Scholar 

  16. Pende D, Cantoni C, Rivera P, Vitale M, Castriconi R, Marcenaro S et al. Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur J Immunol 2001; 31: 1076–1086.

    Article  CAS  Google Scholar 

  17. Vivier E, Tomasello E, Paul P . Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition? Curr Opin Immunol 2002; 14: 306–311.

    Article  CAS  Google Scholar 

  18. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999; 285: 727–729.

    Article  CAS  Google Scholar 

  19. Groh V, Bruhl A, El-Gabalawy H, Nelson JL, Spies T . Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc Natl Acad Sci USA 2003; 100: 9452–9457.

    Article  CAS  Google Scholar 

  20. Andre P, Castriconi R, Espeli M, Anfossi N, Juarez T, Hue S et al. Comparative analysis of human NK cell activation induced by NKG2D and natural cytotoxicity receptors. Eur J Immunol 2004; 34: 961–971.

    Article  CAS  Google Scholar 

  21. Cao W, He W . UL16 binding proteins. Immunobiology 2004; 209: 283–290.

    Article  CAS  Google Scholar 

  22. Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T . Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA 1996; 93: 12445–12450.

    Article  CAS  Google Scholar 

  23. Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 1999; 285: 730–732.

    Article  CAS  Google Scholar 

  24. Arnon TI, Lev M, Katz G, Chernobrov Y, Porgador A, Mandelboim O . Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur J Immunol 2001; 31: 2680–2689.

    Article  CAS  Google Scholar 

  25. Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 2001; 409: 1055–1060.

    Article  CAS  Google Scholar 

  26. Mandelboim O, Porgador A . NKp46. Int J Biochem Cell Biol 2001; 33: 1147–1150.

    Article  CAS  Google Scholar 

  27. Bloushtain N, Qimron U, Bar-Ilan A, Hershkovitz O, Gazit R, Fima E et al. Membrane-associated heparan sulfate proteoglycans are involved in the recognition of cellular targets by NKp30 and NKp46. J Immunol 2004; 173: 2392–2401.

    Article  CAS  Google Scholar 

  28. Nowbakht P, Ionescu MC, Rohner A, Kalberer CP, Rossy E, Mori L et al. Ligands for natural killer cell activating receptors are expressed upon maturation of normal myelomonocytic cells but are low in acute myeloid leukemias. Blood 2005, (E-pub ahead of print).

  29. Augugliaro R, Parolini S, Castriconi R, Marcenaro E, Cantoni C, Nanni M et al. Selective cross-talk among natural cytotoxicity receptors in human natural killer cells. Eur J Immunol 2003; 33: 1235–1241.

    Article  CAS  Google Scholar 

  30. Quentmeier H, Zaborski M, Drexler HG . The human bladder carcinoma cell line 5637 constitutively secretes functional cytokines. Leuk Res 1997; 21: 343–350.

    Article  CAS  Google Scholar 

  31. Decker T, Lohmann-Matthes ML . A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 1988; 115: 61–69.

    Article  CAS  Google Scholar 

  32. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  33. Kim KM, Lee K, Hong YS, Park HY . Fas-mediated apoptosis and expression of related genes in human malignant hematopoietic cells. Exp Mol Med 2000; 32: 246–254.

    Article  CAS  Google Scholar 

  34. Beran M, Andersson BS, Kelleher P, Whalen K, McCredie K, Gutterman J . Diversity of the effect of recombinant tumor necrosis factors alpha and beta on human myelogenous leukemia cell lines. Blood 1987; 69: 721–726.

    CAS  PubMed  Google Scholar 

  35. Odake S, Kam CM, Narasimhan L, Poe M, Blake JT, Krahenbuhl O et al. Human and murine cytotoxic T lymphocyte serine proteases: subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry 1991; 30: 2217–2227.

    Article  CAS  Google Scholar 

  36. Hudig D, Allison NJ, Pickett TM, Winkler U, Kam CM, Powers JC . The function of lymphocyte proteases. Inhibition and restoration of granule-mediated lysis with isocoumarin serine protease inhibitors. J Immunol 1991; 147: 1360–1368.

    CAS  PubMed  Google Scholar 

  37. Hampson IN, Cross MA, Heyworth CM, Fairbairn L, Spooncer E, Cowling GJ et al. Expression and downregulation of cytotoxic cell protease 1 or Granzyme ‘B’ transcripts during myeloid differentiation of interleukin-3-dependent murine stem cell lines. Blood 1992; 80: 3097–3105.

    CAS  PubMed  Google Scholar 

  38. Berthou C, Marolleau JP, Lafaurie C, Soulie A, Dal Cortivo L, Bourge JF et al. Granzyme B and perforin lytic proteins are expressed in CD34+ peripheral blood progenitor cells mobilized by chemotherapy and granulocyte colony-stimulating factor. Blood 1995; 86: 3500–3506.

    CAS  PubMed  Google Scholar 

  39. Rissoan MC, Duhen T, Bridon JM, Bendriss-Vermare N, Peronne C, de Saint Vis B et al. Subtractive hybridization reveals the expression of immunoglobulin-like transcript 7, Eph-B1, granzyme B, and 3 novel transcripts in human plasmacytoid dendritic cells. Blood 2002; 100: 3295–3303.

    Article  CAS  Google Scholar 

  40. Wagner C, Iking-Konert C, Denefleh B, Stegmaier S, Hug F, Hansch GM . Granzyme B and perforin: constitutive expression in human polymorphonuclear neutrophils. Blood 2004; 103: 1099–1104.

    Article  CAS  Google Scholar 

  41. Hu SX, Wang S, Wang JP, Mills GB, Zhou Y, Xu HJ . Expression of endogenous granzyme B in a subset of human primary breast carcinomas. Br J Cancer 2003; 89: 135–139.

    Article  CAS  Google Scholar 

  42. Zhou YJ, Xiong YX, Li CP, Shi D . Suppression of local immune response by GrB expression in gastric cancer cells. Chin Med J 2004; 117: 1573–1575.

    PubMed  Google Scholar 

  43. Berthou C, Michel L, Soulie A, Jean-Louis F, Flageul B, Dubertret L et al. Acquisition of granzyme B and Fas ligand proteins by human keratinocytes contributes to epidermal cell defense. J Immunol 1997; 159: 5293–5300.

    CAS  PubMed  Google Scholar 

  44. Sasson R, Amsterdam A . Pleiotropic anti-apoptotic activity of glucocorticoids in ovarian follicular cells. Biochem Pharmacol 2003; 66: 1393–1401.

    Article  CAS  Google Scholar 

  45. Gao XZ, Bi S, Copra H, Devemy E, Venugopal P, Li B et al. Cytokine gene activity in AML cells in vivo in patients. Leuk Res 1998; 22: 429–438.

    Article  CAS  Google Scholar 

  46. Kurzrock R, Kantarjian H, Wetzler M, Estrov Z, Estey E, Troutman-Worden K et al. Ubiquitous expression of cytokines in diverse leukemias of lymphoid and myeloid lineage. Exp Hematol 1993; 21: 80–85.

    CAS  PubMed  Google Scholar 

  47. Oster W, Cicco NA, Klein H, Hirano T, Kishimoto T, Lindemann A et al. Participation of the cytokines interleukin 6, tumor necrosis factor-alpha, and interleukin 1-beta secreted by acute myelogenous leukemia blasts in autocrine and paracrine leukemia growth control. J Clin Invest 1989; 84: 451–457.

    Article  CAS  Google Scholar 

  48. Ostermann H, Rothenburger M, Mesters RM, van de Loo J, Kienast J . Cytokine response to infection in patients with acute myelogenous leukaemia following intensive chemotherapy. Br J Haematol 1994; 88: 332–337.

    Article  CAS  Google Scholar 

  49. Dybedal I, Bryder D, Fossum A, Rusten LS, Jacobsen SE . Tumor necrosis factor (TNF)-mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood 2001; 98: 1782–1791.

    Article  CAS  Google Scholar 

  50. Maguer-Satta V, Oostendorp R, Reid D, Eaves CJ . Evidence that ceramide mediates the ability of tumor necrosis factor to modulate primitive human hematopoietic cell fates. Blood 2000; 96: 4118–4123.

    CAS  PubMed  Google Scholar 

  51. Motyka B, Korbutt G, Pinkoski MJ, Heibein JA, Caputo A, Hobman M et al. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 2000; 103: 491–500.

    Article  CAS  Google Scholar 

  52. Lehmann C, Zeis M, Schmitz N, Uharek L . Impaired binding of perforin on the surface of tumor cells is a cause of target cell resistance against cytotoxic effector cells. Blood 2000; 96: 594–600.

    CAS  PubMed  Google Scholar 

  53. Sun J, Bird CH, Sutton V, McDonald L, Coughlin PB, De Jong TA et al. A cytosolic granzyme B inhibitor related to the viral apoptotic regulator cytokine response modifier A is present in cytotoxic lymphocytes. J Biol Chem 1996; 271: 27802–27809.

    Article  CAS  Google Scholar 

  54. Hirst CE, Buzza MS, Bird CH, Warren HS, Cameron PU, Zhang M et al. The intracellular granzyme B inhibitor, proteinase inhibitor 9, is up-regulated during accessory cell maturation and effector cell degranulation, and its overexpression enhances CTL potency. J Immunol 2003; 170: 805–815.

    Article  CAS  Google Scholar 

  55. Perez OD, Mitchell D, Jager GC, Nolan GP . LFA-1 signaling through p44/42 is coupled to perforin degranulation in CD56+CD8+ natural killer cells. Blood 2004; 104: 1083–1093.

    Article  CAS  Google Scholar 

  56. Allcock RJ, Barrow AD, Forbes S, Beck S, Trowsdale J . The human TREM gene cluster at 6p21.1 encodes both activating and inhibitory single IgV domain receptors and includes NKp44. Eur J Immunol 2003; 33: 567–577.

    Article  CAS  Google Scholar 

  57. Biassoni R, Cantoni C, Pende D, Sivori S, Parolini S, Vitale M et al. Human natural killer cell receptors and co-receptors. Immunol Rev 2001; 181: 203–214.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Lucie Gazel for technical helpful. This work was supported by the Association pour la Recherche contre le Cancer (ARC) (grant 4687). FG is a recipient of a grant from the Ministère de l'Education Nationale, de l'Enseignement Supérieur, et de la Recherche (MENESR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Quillet-Mary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guilloton, F., de Thonel, A., Jean, C. et al. TNFα stimulates NKG2D-mediated lytic activity of acute myeloid leukemic cells. Leukemia 19, 2206–2214 (2005). https://doi.org/10.1038/sj.leu.2403952

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403952

Keywords

This article is cited by

Search

Quick links