Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

CME, BCR/ABL Studies and Myeloproliferative Disorders

Zoledronate inhibits proliferation and induces apoptosis of imatinib-resistant chronic myeloid leukaemia cells

Abstract

Although imatinib mesylate has revolutionized the treatment of chronic myeloid leukaemia (CML), resistance to the drug, manifesting as relapse after an initial response or persistence of disease, remains a therapeutic challenge. In order to overcome this, alternative or additional targeting of signaling pathways downstream of Bcr-Abl may provide the best option for improving clinical response. Bisphosphonates, such as zoledronate, have been shown to inhibit the oncogenicity of Ras, an important downstream effector of Bcr-Abl. In this study, we show that zoledronate is equally effective in inhibiting the proliferation and clonogenicity of both imatinib-sensitive and -resistant CML cells, regardless of their mechanism of resistance. This is achieved by the induction of S-phase cell cycle arrest and apoptosis, through the inhibition of prenylation of Ras and Ras-related proteins by zoledronate. The combination of imatinib and zoledronate also augmented the activity of either drug alone and this occurred in imatinib-resistant CML cells as well. Since zoledronate is already available for clinical use, these results suggest that it may be an effective addition to the armamentarium of drugs for the treatment of CML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Goldman JM, Melo JV . Chronic myeloid leukemia – advances in biology and new approaches to treatment. N Engl J Med 2003; 349: 1451–1464.

    Article  CAS  PubMed  Google Scholar 

  2. Sawyers CL . Chronic myeloid leukemia. N Engl J Med 1999; 340: 1330–1340.

    Article  CAS  PubMed  Google Scholar 

  3. O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003; 348: 994–1004.

    Article  CAS  PubMed  Google Scholar 

  4. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002; 99: 3530–3539.

    Article  CAS  PubMed  Google Scholar 

  5. Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 2002; 99: 1928–1937.

    Article  CAS  PubMed  Google Scholar 

  6. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002; 346: 645–652.

    Article  CAS  PubMed  Google Scholar 

  7. Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 2000; 96: 1070–1079.

    CAS  PubMed  Google Scholar 

  8. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  CAS  PubMed  Google Scholar 

  9. von Bubnoff N, Schneller F, Peschel C, Duyster J . BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 2002; 359: 487–491.

    Article  CAS  PubMed  Google Scholar 

  10. Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 2002; 99: 3472–3475.

    Article  CAS  PubMed  Google Scholar 

  11. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2: 117.

    Article  CAS  PubMed  Google Scholar 

  12. Roumiantsev S, Shah NP, Gorre ME, Nicoll J, Brasher BB, Sawyers CL et al. Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Proc Natl Acad Sci USA 2002; 99: 10700–10705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG et al. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 1994; 13: 764–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Druker B, Okuda K, Matulonis U, Salgia R, Roberts T, Griffin JD . Tyrosine phosphorylation of rasGAP and associated proteins in chronic myelogenous leukemia cell lines. Blood 1992; 79: 2215–2220.

    CAS  PubMed  Google Scholar 

  15. Rebollo A, Martinez A . Ras proteins: recent advances and new functions. Blood 1999; 94: 2971–2980.

    CAS  PubMed  Google Scholar 

  16. Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer 2000; 88 (12 Suppl): 2961–2978.

    Article  CAS  PubMed  Google Scholar 

  17. Lerner EC, Zhang TT, Knowles DB, Qian Y, Hamilton AD, Sebti SM . Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene 1997; 15: 1283–1288.

    Article  CAS  PubMed  Google Scholar 

  18. Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 1997; 272: 14459–14464.

    Article  CAS  PubMed  Google Scholar 

  19. Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ . Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 1998; 13: 581–589.

    Article  CAS  PubMed  Google Scholar 

  20. Shipman CM, Rogers MJ, Apperley JF, Russell RG, Croucher PI . Bisphosphonates induce apoptosis in human myeloma cell lines: a novel anti-tumour activity. Br J Haematol 1997; 98: 665–672.

    Article  CAS  PubMed  Google Scholar 

  21. Tassone P, Forciniti S, Galea E, Morrone G, Turco MC, Martinelli V et al. Growth inhibition and synergistic induction of apoptosis by zoledronate and dexamethasone in human myeloma cell lines. Leukemia 2000; 14: 841–844.

    Article  CAS  PubMed  Google Scholar 

  22. Iguchi T, Miyakawa Y, Yamamoto K, Kizaki M, Ikeda Y . Nitrogen-containing bisphosphonates induce S-phase cell cycle arrest and apoptosis of myeloma cells by activating MAPK pathway and inhibiting mevalonate pathway. Cell Signal 2003; 15: 719–727.

    Article  CAS  PubMed  Google Scholar 

  23. Hiraga T, Williams PJ, Mundy GR, Yoneda T . The bisphosphonate ibandronate promotes apoptosis in MDA-MB-231 human breast cancer cells in bone metastases. Cancer Res 2001; 61: 4418–4424.

    CAS  PubMed  Google Scholar 

  24. Jagdev SP, Coleman RE, Shipman CM, Rostami H, Croucher PI . The bisphosphonate, zoledronic acid, induces apoptosis of breast cancer cells: evidence for synergy with paclitaxel. Br J Cancer 2001; 84: 1126–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tassone P, Tagliaferri P, Viscomi C, Palmieri C, Caraglia M, D'Alessandro A et al. Zoledronic acid induces antiproliferative and apoptotic effects in human pancreatic cancer cells in vitro. Br J Cancer 2003; 88: 1971–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee MV, Fong EM, Singer FR, Guenette RS . Bisphosphonate treatment inhibits the growth of prostate cancer cells. Cancer Res 2001; 61: 2602–2608.

    CAS  PubMed  Google Scholar 

  27. Kuroda J, Kimura S, Segawa H, Kobayashi Y, Yoshikawa T, Urasaki Y et al. The third-generation bisphosphonate zoledronate synergistically augments the anti-Ph+ leukemia activity of imatinib mesylate. Blood 2003; 102: 2229–2235.

    Article  CAS  PubMed  Google Scholar 

  28. Caraglia M, D'Alessandro AM, Marra M, Giuberti G, Vitale G, Viscomi C et al. The farnesyl transferase inhibitor R115777 (Zarnestra) synergistically enhances growth inhibition and apoptosis induced on epidermoid cancer cells by Zoledronic acid (Zometa) and Pamidronate. Oncogene 2004; 23: 6900–6913.

    Article  CAS  PubMed  Google Scholar 

  29. Laneuville P, Heisterkamp N, Groffen J . Expression of the chronic myelogenous leukemia-associated p210bcr/abl oncoprotein in a murine IL-3 dependent myeloid cell line. Oncogene 1991; 6: 275–282.

    CAS  PubMed  Google Scholar 

  30. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    Article  CAS  PubMed  Google Scholar 

  31. La Rosee P, Corbin AS, Stoffregen EP, Deininger MW, Druker BJ . Activity of the Bcr-Abl kinase inhibitor PD180970 against clinically relevant Bcr-Abl isoforms that cause resistance to imatinib mesylate (Gleevec, STI571). Cancer Res 2002; 62: 7149–7153.

    CAS  PubMed  Google Scholar 

  32. Barnes DJ, Palaiologou D, Panousopoulou E, Schultheis B, Wong A, Pattacini L et al. Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate. Cancer Res 2005, in press.

  33. Tipping AJ, Deininger MW, Goldman JM, Melo JV . Comparative gene expression profile of chronic myeloid leukemia cells innately resistant to imatinib mesylate. Exp Hematol 2003; 31: 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  34. Tipping AJ, Mahon FX, Zafirides G, Lagarde V, Goldman JM, Melo JV . Drug responses of imatinib mesylate-resistant cells: synergism of imatinib with other chemotherapeutic drugs. Leukemia 2002; 16: 2349–2357.

    Article  CAS  PubMed  Google Scholar 

  35. Chou TC, Talalay P . Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regulat 1984; 22: 27–55.

    Article  CAS  Google Scholar 

  36. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate- phenol-chloroform extraction. Anal Biochem 1987; 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  37. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003; 349: 1423–1432.

    Article  CAS  PubMed  Google Scholar 

  38. Major P . The use of zoledronic acid, a novel, highly potent bisphosphonate, for the treatment of hypercalcemia of malignancy. Oncologist 2002; 7: 481–491.

    Article  CAS  PubMed  Google Scholar 

  39. Ibrahim A, Scher N, Williams G, Sridhara R, Li N, Chen G et al. Approval summary for zoledronic acid for treatment of multiple myeloma and cancer bone metastases. Clin Cancer Res 2003; 9: 2394–2399.

    CAS  PubMed  Google Scholar 

  40. Senaratne SG, Pirianov G, Mansi JL, Arnett TR, Colston KW . Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer 2000; 82: 1459–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kerkhoff E, Rapp UR . Cell cycle targets of Ras/Raf signalling. Oncogene 1998; 17 (11 Reviews): 1457–1462.

    Article  CAS  PubMed  Google Scholar 

  42. Pruitt K, Der CJ . Ras and Rho regulation of the cell cycle and oncogenesis. Cancer Lett 2001; 171: 1–10.

    Article  CAS  PubMed  Google Scholar 

  43. Deininger MW, Vieira SA, Parada Y, Banerji L, Lam EW, Peters G et al. Direct relation between BCR-ABL tyrosine kinase activity and cyclin D2 expression in lymphoblasts. Cancer Res 2001; 61: 8005–8013.

    CAS  PubMed  Google Scholar 

  44. La Rosee P, Johnson K, Corbin AS, Stoffregen EP, Moseson EM, Willis S et al. In vitro efficacy of combined treatment depends on the underlying mechanism of resistance in imatinib-resistant Bcr-Abl-positive cell lines. Blood 2004; 103: 208–215.

    Article  CAS  PubMed  Google Scholar 

  45. Hoover RR, Mahon FX, Melo JV, Daley GQ . Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood 2002; 100: 1068–1071.

    Article  CAS  PubMed  Google Scholar 

  46. Corbin AS, La Rosee P, Stoffregen EP, Druker BJ, Deininger MW . Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood 2003; 101: 4611–4614.

    Article  CAS  PubMed  Google Scholar 

  47. Chen T, Berenson J, Vescio R, Swift R, Gilchick A, Goodin S et al. Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J Clin Pharmacol 2002; 42: 1228–1236.

    Article  CAS  PubMed  Google Scholar 

  48. Skerjanec A, Berenson J, Hsu C, Major P, Miller Jr WH, Ravera C et al. The pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with varying degrees of renal function. J Clin Pharmacol 2003; 43: 154–162.

    Article  CAS  PubMed  Google Scholar 

  49. Sato M, Grasser W, Endo N, Akins R, Simmons H, Thompson DD et al. Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest 1991; 88: 2095–2105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Croucher PI, De Hendrik R, Perry MJ, Hijzen A, Shipman CM, Lippitt J et al. Zoledronic acid treatment of 5T2MM-bearing mice inhibits the development of myeloma bone disease: evidence for decreased osteolysis, tumor burden and angiogenesis, and increased survival. J Bone Miner Res 2003; 18: 482–492.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Elisabeth Buchdunger and Dr Jonathan Green (Novartis, Switzerland) for their kind gift of IM and ZOL, respectively, and to Dr Alex Tipping, Ms Christalla Dimitriadis and Ms Kara Johnson for their advice and technical assistance. This work was supported by the Leukaemia Research Fund, United Kingdom; Singapore General Hospital Medical Fellowship and National Medical Research Council-Totalisator Board Medical Research Fellowship, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J V Melo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuah, C., Barnes, D., Kwok, M. et al. Zoledronate inhibits proliferation and induces apoptosis of imatinib-resistant chronic myeloid leukaemia cells. Leukemia 19, 1896–1904 (2005). https://doi.org/10.1038/sj.leu.2403949

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403949

Keywords

This article is cited by

Search

Quick links