Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Lymphoma

Leukotriene B4 receptor inhibitor LY293111 induces cell cycle arrest and apoptosis in human anaplastic large-cell lymphoma cells via JNK phosphorylation

Abstract

Anaplastic large-cell lymphoma (ALCL) is a heterogeneous lymphoma category in which a subset of cases carry the t(2;5)(p23;q35) or variant translocations resulting in overexpression of anaplastic lymphoma kinase (ALK). LY293111 (2-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]-propoxy]-phenoxy] benzoic acid sodium salt) is a leukotriene B4 receptor antagonist, which was found to be safe and tolerable in Phase I clinical trials. In this study, we investigated the potential therapeutic effects and mechanisms of action of LY293111 in ALCL cell lines. LY293111 inhibited proliferation of both ALK(+) and ALK(−) ALCL cell in a dose-dependent fashion and induced complete G1–S cell cycle arrest, which was accompanied by upregulation of p27 and downregulation of cyclin E. Pretreatment with LY293111 for 4 h resulted in profound inhibition of serum-induced phosphorylation of extracellular-regulated kinases-1 and 2 and Akt and a concomitant increase in the phosphorylation of the stress-activated kinase c-jun N-terminal kinases (JNK). Simultaneously, LY293111 induced caspase-dependent apoptosis via activation of the intrinsic pathway, including early loss of mitochondrial inner transmembrane potential and the production of reactive oxygen species (ROS), cleavage of caspases-9, -3, poly ADP-ribose polymerase (PARP) and X-linked inhibitor of apoptosis. The phospho-JNK inhibitor SP600125 partially protected Sup-M2 cells from LY293111-induced apoptosis, PARP cleavage and ROS generation, suggesting a role for JNK in LY293111-induced cell death. These results warrant further studies of LY293111 in ALCL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Stein H, Mason DY, Gerdes J, O'Connor N, Wainscoat J, Pallesen G et al. The expression of the Hodgkin disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed–Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood 1985; 66: 848–858.

    CAS  PubMed  Google Scholar 

  2. Morris SW, Xue L, Ma Z, Kinney MC . Alk+ CD30+ lymphomas: a distinct molecular genetic subtype of non-Hodgkin's lymphoma. Br J Haematol 2001; 113: 275–295.

    Article  CAS  PubMed  Google Scholar 

  3. Falini B, Mason DY . Proteins encoded by genes involved in chromosomal alterations in lymphoma and leukemia: clinical value of their detection by immunocytochemistry. Blood 2002; 99: 409–426.

    Article  CAS  PubMed  Google Scholar 

  4. Pulford K, Morris SW, Turturro F . Anaplastic lymphoma kinase proteins in growth control and cancer. J Cell Physiol 2004; 199: 330–358.

    Article  CAS  PubMed  Google Scholar 

  5. Andersson PO, Braide I, Nilsson-Ehle H . Trofosfamide as salvage therapy for anaplastic large cell lymphoma relapsing after high-dose chemotherapy. Leuk Lymphoma 2002; 43: 2351–2353.

    Article  CAS  PubMed  Google Scholar 

  6. Crooks SW, Stockley RA . Leukotriene B4. Int J Biochem Cell Biol 1998; 30: 173–178.

    Article  CAS  PubMed  Google Scholar 

  7. Hennig R, Ding XZ, Tong WG, Witt RC, Jovanovic BD, Adrian TE . Effect of LY293111 in combination with gemcitabine in colonic cancer. Cancer Lett 2004; 210: 41–46.

    Article  CAS  PubMed  Google Scholar 

  8. Bittner S, Wielckens K . Glucocorticoid-induced lymphoma cell growth inhibition: the role of leukotriene B4. Endocrinology 1988; 123: 991–1000.

    Article  CAS  PubMed  Google Scholar 

  9. Okano-Mitani H, Ikai K, Imamura S . Human melanoma cells generate leukotrienes B4 and C4 from leukotriene A4. Arch Dermatol Res 1997; 289: 347–351.

    Article  CAS  PubMed  Google Scholar 

  10. el-Hakim IE, Langdon JD, Zakrzewski JT, Costello JF . Leukotriene B4 and oral cancer. Br J Oral Maxillofac Surg 1990; 28: 155–159.

    Article  CAS  PubMed  Google Scholar 

  11. el-Hakim IE, Zakrzewski JD, Langdon J, Piper P, Costello JF . A possible role for leukotriene B4 in head and neck cancer. Br J Cancer 1989; 59: 833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Earashi M, Noguchi M, Tanaka M . In vitro effects of eicosanoid synthesis inhibitors in the presence of linoleic acid on MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 1996; 37: 29–37.

    Article  CAS  PubMed  Google Scholar 

  13. Tong WG, Ding XZ, Hennig R, Witt RC, Standop J, Pour PM et al. Leukotriene B4 receptor antagonist LY293111 inhibits proliferation and induces apoptosis in human pancreatic cancer cells. Clin Cancer Res 2002; 8: 3232–3242.

    CAS  PubMed  Google Scholar 

  14. Qiao L, Kozoni V, Tsioulias GJ, Koutsos MI, Hanif R, Shiff SJ et al. Selected eicosanoids increase the proliferation rate of human colon carcinoma cell lines and mouse colonocytes in vivo. Biochim Biophys Acta 1995; 1258: 215–223.

    Article  PubMed  Google Scholar 

  15. Frommel TO, Dyavanapalli M, Oldham T, Kazi N, Lietz H, Liao Y et al. Effect of aspirin on prostaglandin E2 and leukotriene B4 production in human colonic mucosa from cancer patients. Clin Cancer Res 1997; 3: 209–213.

    CAS  PubMed  Google Scholar 

  16. Odlander B, Jakobsson PJ, Medina JF, Radmark O, Yamaoka KA, Rosen A et al. Formation and effects of leukotriene B4 in human lymphocytes. Int J Tissue React 1989; 11: 277–289.

    CAS  PubMed  Google Scholar 

  17. Lindsay MA, Haddad EB, Rousell J, Teixeira MM, Hellewell PG, Barnes PJ et al. Role of the mitogen-activated protein kinases and tyrosine kinases during leukotriene B4-induced eosinophil activation. J Leuk Biol 1998; 64: 555–562.

    Article  CAS  Google Scholar 

  18. Loren CE, Scully A, Grabbe C, Edeen PT, Thomas J, McKeown M et al. Identification and characterization of DAlk: a novel Drosophila melanogaster RTK which drives ERK activation in vivo. Genes Cells 2001; 6: 531–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mong S, Chi-Rosso G, Miller J, Hoffman K, Razgaitis KA, Bender P et al. Leukotriene B4 induces formation of inositol phosphates in rat peritoneal polymorphonuclear leukocytes. Mol Pharmacol 1986; 30: 235–242.

    CAS  PubMed  Google Scholar 

  20. Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J . Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 2000; 96: 4319–4327.

    CAS  PubMed  Google Scholar 

  21. Platanias LC . Map kinase signaling pathways and hematologic malignancies. Blood 2003; 101: 4667–4679.

    Article  CAS  PubMed  Google Scholar 

  22. Ogasawara T, Yasuyama M, Kawauchi K . Constitutive activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase in B-cell lymphoproliferative disorders. Int J Hematol 2003; 77: 364–370.

    Article  CAS  PubMed  Google Scholar 

  23. Jackson WT, Froelich LL, Boyd RJ, Schrementi JP, Saussy Jr DL, Schultz RM et al. Pharmacologic actions of the second-generation leukotriene B4 receptor antagonist LY293111: in vitro studies. J Pharmacol Exp Ther 1999; 288: 286–294.

    CAS  PubMed  Google Scholar 

  24. Xiong HQ . Molecular targeting therapy for pancreatic cancer. Cancer Chemother Pharmacol 2004; 54 (Suppl 1): S69–S77.

    PubMed  Google Scholar 

  25. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al. Fusion of a kinase gene, Alk, to a nucleolar protein gene, Npm, in non-Hodgkin's-lymphoma. Science 1994; 263: 1281–1284.

    Article  CAS  PubMed  Google Scholar 

  26. Marti RM, Wasik MA, Kadin ME . Constitutive secretion of GM-CSF by three different cell lines derived from a single patient with a progressive cutaneous lymphoproliferative disorder. Cytokine 1996; 8: 323–329.

    Article  CAS  PubMed  Google Scholar 

  27. Clodi K, Kliche KO, Zhao S, Weidner D, Schenk T, Consoli U et al. Cell-surface exposure of phosphatidylserine correlates with the stage of fludarabine-induced apoptosis in chronic lymphocytic leukemia and expression of apoptosis-regulating genes. Cytometry 2000; 40: 19–25.

    Article  CAS  PubMed  Google Scholar 

  28. Hail Jr N, Konopleva M, Sporn M, Lotan R, Andreeff M . Evidence supporting a role for calcium in apoptosis induction by the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO). J Biol Chem 2004; 279: 11179–11187.

    Article  CAS  PubMed  Google Scholar 

  29. Konopleva M, Tsao T, Estrov Z, Lee RM, Wang RY, Jackson CE et al. The synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces caspase-dependent and -independent apoptosis in acute myelogenous leukemia. Cancer Res 2004; 64: 7927–7935.

    Article  CAS  PubMed  Google Scholar 

  30. Lemasters JJV . Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol 1999; 276: G1–G6.

    CAS  PubMed  Google Scholar 

  31. Pastorino JG, Hoek JB . Ethanol potentiates tumor necrosis factor-alpha cytotoxicity in hepatoma cells and primary rat hepatocytes by promoting induction of the mitochondrial permeability transition. Hepatology 2000; 31: 1141–1152.

    Article  CAS  PubMed  Google Scholar 

  32. Perkins EJ, Cramer JW, Farid NA, Gadberry MG, Jackson DA, Mattiuz EL et al. Preclinical characterization of 2-[3-[3-[5-ethyl-4′-fluoro-2-hydroxy[1,1′-biphenyl]-4-yl]oxy]propoxy]-2-propylphenoxy]benzoic acid metabolism: in vitro species comparison and in vivo disposition in rats. Drug Metab Dispos 2003; 31: 1382–1390.

    Article  CAS  PubMed  Google Scholar 

  33. Budman DR, Calabro A . Studies of synergistic and antagonistic combinations of conventional cytotoxic agents with the multiple eicosanoid pathway modulator LY 293111. Anticancer Drugs 2004; 15: 877–881.

    Article  CAS  PubMed  Google Scholar 

  34. Nigg EA . Cyclin-dependent protein kinase: key regulators of the eukaryotic cell cycle. Bioessays 1995; 17: 471–480.

    Article  CAS  PubMed  Google Scholar 

  35. Rassidakis GZ, Feretzaki M, Atwell C, Grammatikakis I, Lin Q, Lai R et al. Inhibition of Akt increases p27Kip1 levels and induces cell cycle arrest in anaplastic large cell lymphoma. Blood 2005; 105: 827–829.

    Article  CAS  PubMed  Google Scholar 

  36. Gysin S, Lee SH, Dean NM, McMahon M . Pharmacologic inhibition of RAF → MEK → ERK signaling elicits pancreatic cancer cell cycle arrest through induced expression of p27Kip1. Cancer Res 2005; 65: 4870–4880.

    Article  CAS  PubMed  Google Scholar 

  37. Hockenbery DM, Oltvai ZN, Yin XN, Milliman CL, Korsmeyer SJ . Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75: 241–251.

    Article  CAS  PubMed  Google Scholar 

  38. Deng X, Gao F, May Jr WS . Bcl2 retards G1/S cell cycle transition by regulating intracellular ROS. Blood 2003; 102: 3179–3185.

    Article  CAS  PubMed  Google Scholar 

  39. Rassidakis GZ, Sarris AH, Herling M, Ford RJ, Cabanillas F, McDonnell TJ et al. Differential expression of BCL-2 family proteins in ALK-positive and ALK-negative anaplastic large cell lymphoma of T/null-cell lineage. Am J Pathol 2001; 159: 527–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Drakos E, Rassidakis GZ, Lai R, Herling M, O'Connor SL, Schmitt-Graeff A et al. Caspase-3 activation in systemic anaplastic large-cell lymphoma. Mod Pathol 2004; 17: 109–116.

    Article  CAS  PubMed  Google Scholar 

  41. Ruvolo PP, Deng X, Ito T, Carr BK, May WS . Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A. J Biol Chem 1999; 274: 20296–20300.

    Article  CAS  PubMed  Google Scholar 

  42. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.

    Article  CAS  PubMed  Google Scholar 

  43. Runarsson G, Liu A, Mahshid Y, Feltenmark S, Pettersson A, Klein E et al. Leukotriene B4 plays a pivotal role in CD40-dependent activation of chronic B lymphocytic leukemia cells. Blood 2005; 105: 1274–1279.

    Article  CAS  PubMed  Google Scholar 

  44. Marder P, Sawyer JS, Froelich LL, Mann LL, Spaethe SM . Blockade of human neutrophil activation by 2-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenoxy] benzoic acid (LY 293111), a novel leukotriene B4 receptor antagonist. Biochem Pharmacol 1995; 49: 1683–1690.

    Article  CAS  PubMed  Google Scholar 

  45. Schwartz GK, Weitzman A, O'reilly E, Brail L, de Alwis DP, Cleverly A et al. Phase I and pharmacokinetic study of LY293111, an orally Bioavailable LTB4 receptor antagonist, in patients with advanced solid tumors. J Clin Oncol 2005, June 6 [E-pub ahead of print].

Download references

Acknowledgements

We thank Drs Numsen Hail, Jr, Ismael J Samudio and Betty L Notzon for critical review of the manuscript. Grant support: Supported in part by grants from the National Institutes of Health (PO1 CA55164 and CA16672) and the Paul and Mary Haas Chair in Genetics (to MA) and a grant from Eli Lilly and Company (to MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Konopleva.

Additional information

Supplementary Information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., McQueen, T., Schober, W. et al. Leukotriene B4 receptor inhibitor LY293111 induces cell cycle arrest and apoptosis in human anaplastic large-cell lymphoma cells via JNK phosphorylation. Leukemia 19, 1977–1984 (2005). https://doi.org/10.1038/sj.leu.2403929

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403929

Keywords

This article is cited by

Search

Quick links