Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Stem Cells

Direct evidence for cooperating genetic events in the leukemic transformation of normal human hematopoietic cells

Abstract

Although genetic abnormalities associated with hematological malignancies are readily identified, the natural history of human leukemia cannot be observed because initiating and subsequent transforming events occur before clinical presentation. Furthermore, it has not been possible to study leukemogenesis in vitro as normal human cells do not spontaneously transform. Thus, the nature and sequence of genetic changes required to convert human hematopoietic cells into leukemia cells have never been directly examined. We have developed a system where the first step in the leukemogenic process is an engineered disruption of differentiation and self-renewal due to expression of the TLS-ERG oncogene, followed in some cases by overexpression of hTERT. In two of 13 experiments, transduced cells underwent step-wise transformation and immortalization through spontaneous acquisition of additional changes. The acquired karyotypic abnormalities and alterations including upregulation of Bmi-1 and telomerase all occur in acute myeloid leukemia (AML), establishing the relevance of this system. One resultant cell line studied in depth exhibits cellular properties characteristic of AML, notably a hierarchical organization initiated by leukemic stem cells that differentiate abnormally. These findings provide direct evidence for multiple cooperating events in human leukemogenesis, and provide a foundation for studying the genetic changes that occur during leukemic initiation and progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hope KJ, Jin L, Dick JE . Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004; 5: 738–743.

    CAS  PubMed  Google Scholar 

  2. Dash A, Gilliland DG . Molecular genetics of acute myeloid leukaemia. Best Pract Res Clin Haematol 2001; 14: 49–64.

    Article  CAS  PubMed  Google Scholar 

  3. Warner JK, Wang JC, Hope KJ, Jin L, Dick JE . Concepts of human leukemic development. Oncogene 2004; 23: 7164–7177.

    Article  CAS  PubMed  Google Scholar 

  4. Hahn WC, Weinberg RA . Rules for making human tumor cells. N Engl J Med 2002; 347: 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  5. Kamps MP, Baltimore D . E2A-Pbx1, the t(1;19) translocation protein of human pre-B-cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice. Mol Cell Biol 1993; 13: 351–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sykes DB, Kamps MP . E2a/Pbx1 induces the rapid proliferation of stem cell factor-dependent murine pro-T cells that cause acute T-lymphoid or myeloid leukemias in mice. Mol Cell Biol 2004; 24: 1256–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schwieger M, Lohler J, Fischer M, Herwig U, Tenen DG, Stocking C . A dominant-negative mutant of C/EBPalpha, associated with acute myeloid leukemias, inhibits differentiation of myeloid and erythroid progenitors of man but not mouse. Blood 2004; 103: 2744–2752.

    Article  CAS  PubMed  Google Scholar 

  8. Land H, Parada LF, Weinberg RA . Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 1983; 304: 596–602.

    Article  CAS  PubMed  Google Scholar 

  9. Ruley HE . Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 1983; 304: 602–606.

    Article  CAS  PubMed  Google Scholar 

  10. Hamad NM, Elconin JH, Karnoub AE, Bai W, Rich JN, Abraham RT et al. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev 2002; 16: 2045–2057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grignani F, Valtieri M, Gabbianelli M, Gelmetti V, Botta R, Luchetti L et al. PML/RAR alpha fusion protein expression in normal human hematopoietic progenitors dictates myeloid commitment and the promyelocytic phenotype. Blood 2000; 96: 1531–1537.

    CAS  PubMed  Google Scholar 

  12. Ferrucci PF, Grignani F, Pearson M, Fagioli M, Nicoletti I, Pelicci PG . Cell death induction by the acute promyelocytic leukemia-specific PML/RARalpha fusion protein. Proc Natl Acad Sci USA 1997; 94: 10901–10906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  PubMed  Google Scholar 

  14. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  15. Mulloy JC, Cammenga J, Berguido FJ, Wu K, Zhou P, Comenzo RL et al. Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood 2003; 102: 4369–4376.

    Article  CAS  PubMed  Google Scholar 

  16. Buske C, Feuring-Buske M, Abramovich C, Spiekermann K, Eaves CJ, Coulombel L et al. Deregulated expression of HOXB4 enhances the primitive growth activity of human hematopoietic cells. Blood 2002; 100: 862–868.

    Article  CAS  PubMed  Google Scholar 

  17. Westervelt P, Ley TJ . Seed versus soil: the importance of the target cell for transgenic models of human leukemias. Blood 1999; 93: 2143–2148.

    CAS  PubMed  Google Scholar 

  18. Castilla LH, Garrett L, Adya N, Orlic D, Dutra A, Anderson S et al. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 1999; 23: 144–146.

    Article  CAS  PubMed  Google Scholar 

  19. Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001; 98: 10398–10403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hiyoshi M, Koh KR, Yamane T, Tatsumi N . Acute non-lymphoblastic leukaemia with t(16;21): case report with a review of the literature. Clin Lab Haematol 1995; 17: 243–246.

    CAS  PubMed  Google Scholar 

  21. Kong XT, Ida K, Ichikawa H, Shimizu K, Ohki M, Maseki N et al. Consistent detection of TLS/FUS-ERG chimeric transcripts in acute myeloid leukemia with t(16;21)(p11;q22) and identification of a novel transcript. Blood 1997; 90: 1192–1199.

    CAS  PubMed  Google Scholar 

  22. Pereira DS, Dorrell C, Ito CY, Gan OI, Murdoch B, Rao VN et al. Retroviral transduction of TLS-ERG initiates a leukemogenic program in normal human hematopoietic cells. Proc Natl Acad Sci USA 1998; 95: 8239–8244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 1996; 2: 1329–1337.

    Article  CAS  PubMed  Google Scholar 

  24. Guenechea G, Gan OI, Dorrell C, Dick JE . Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol 2001; 2: 75–82.

    Article  CAS  PubMed  Google Scholar 

  25. Harrington L, Zhou W, McPhail T, Oulton R, Yeung DS, Mar V et al. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev 1997; 11: 3109–3115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L . Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 2000; 25: 217–222.

    Article  CAS  PubMed  Google Scholar 

  27. Guenechea G, Gan OI, Inamitsu T, Dorrell C, Pereira DS, Kelly M et al. Transduction of human CD34+CD38− bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol Ther 2000; 1: 566–573.

    Article  CAS  PubMed  Google Scholar 

  28. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE . Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992; 255: 1137–1141.

    Article  CAS  PubMed  Google Scholar 

  29. Wang JC, Doedens M, Dick JE . Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood 1997; 89: 3919–3924.

    CAS  PubMed  Google Scholar 

  30. Vormoor J, Lapidot T, Pflumio F, Risdon G, Patterson B, Broxmeyer HE et al. Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood 1994; 83: 2489–2497.

    CAS  PubMed  Google Scholar 

  31. Mazurier F, Doedens M, Gan OI, Dick JE . Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med 2003; 9: 959–963.

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt M, Zickler P, Hoffmann G, Haas S, Wissler M, Muessig A et al. Polyclonal long-term repopulating stem cell clones in a primate model. Blood 2002; 100: 2737–2743.

    Article  CAS  PubMed  Google Scholar 

  33. Verma RS, Babu A . Banding Techniques. In: Pennington JE, Sheinis LA (eds). Human Chromosomes: Principles and Techniques, 2nd edn. New York: McGraw Hill Inc, 1995, pp 74–75.

    Google Scholar 

  34. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  35. Lessard J, Sauvageau G . Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003; 423: 255–260.

    Article  CAS  PubMed  Google Scholar 

  36. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423: 302–305.

    Article  CAS  PubMed  Google Scholar 

  37. Alkema MJ, Wiegant J, Raap AK, Berns A, Van Lohuizen M . Characterization and chromosomal localization of the human proto-oncogene BMI-1. Hum Mol Genet 1993; 2: 1597–1603.

    Article  CAS  PubMed  Google Scholar 

  38. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  39. Ohyashiki JH, Ohyashiki K, Iwama H, Hayashi S, Toyama K, Shay JW . Clinical implications of telomerase activity levels in acute leukemia. Clin Cancer Res 1997; 3: 619–625.

    CAS  PubMed  Google Scholar 

  40. Buske C, Feuring-Buske M, Antonchuk J, Rosten P, Hogge DE, Eaves CJ et al. Overexpression of HOXA10 perturbs human lymphomyelopoiesis in vitro and in vivo. Blood 2001; 97: 2286–2292.

    Article  CAS  PubMed  Google Scholar 

  41. Tomlinson I, Bodmer W . Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog. Nat Med 1999; 5: 11–12.

    Article  CAS  PubMed  Google Scholar 

  42. Suzuki A, Kimura Y, Ohyashiki K, Kitano K, Kageyama S, Kasai M et al. Trisomy 10 in acute myeloid leukemia. Three additional cases from the database of the Japan Adult Leukemia Study Group (JALSG) AML-92 and AML-95. Cancer Genet Cytogenet 2000; 120: 141–143.

    Article  CAS  PubMed  Google Scholar 

  43. Llewellyn IE, Morris CM, Stanworth S, Heaton DC, Spearing RL . Trisomy 10 in acute myeloid leukemia: three new cases. Cancer Genet Cytogenet 2000; 118: 148–150.

    Article  CAS  PubMed  Google Scholar 

  44. Johansson B, Billstrom R, Mauritzson N, Mitelman F . Trisomy 19 as the sole chromosomal anomaly in hematologic neoplasms. Cancer Genet Cytogenet 1994; 74: 62–65.

    Article  CAS  PubMed  Google Scholar 

  45. Czepulkowski B, Powell AR, Pagliuca A, Mufti GJ . Trisomy 10 and acute myeloid leukemia. Cancer Genet Cytogenet 2002; 134: 81–83.

    Article  CAS  PubMed  Google Scholar 

  46. Lessard J, Baban S, Sauvageau G . Stage-specific expression of polycomb group genes in human bone marrow cells. Blood 1998; 91: 1216–1224.

    CAS  PubMed  Google Scholar 

  47. Marie JP, Izaguirre CA, Civin CI, Mirro J, McCulloch EA . Granulopoietic differentiation in AML blasts in culture. Blood 1981; 58: 670–674.

    CAS  PubMed  Google Scholar 

  48. Griffin JD, Larcom P, Schlossman SF . Use of surface markers to identify a subset of acute myelomonocytic leukemia cells with progenitor cell properties. Blood 1983; 62: 1300–1303.

    CAS  PubMed  Google Scholar 

  49. Enver T, Greaves M . Loops, lineage, and leukemia. Cell 1998; 94: 9–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge assistance from Paula Marrano and Jeremy Squire for cytogenetic analysis and Monica Doedens for IF injections. We thank members of the Dick lab for critical comments on the manuscript. This work was supported by Canadian Institutes of Health Research fellowship (JCYW) and studentships (JKW and JLM), grants from the National Cancer Institute of Canada with funds from the Canadian Cancer Society (JED and LH), Canadian Institutes of Health Research and Genome Canada (JED), National Institutes of Health (LH), and a Canada Research Chair (JED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J E Dick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warner, J., Wang, J., Takenaka, K. et al. Direct evidence for cooperating genetic events in the leukemic transformation of normal human hematopoietic cells. Leukemia 19, 1794–1805 (2005). https://doi.org/10.1038/sj.leu.2403917

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403917

Keywords

This article is cited by

Search

Quick links