Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Chronic Myeloid Leukemia, BCR/ABL Studies and Myelo Proliferative Disorders

Induction of centrosome and chromosome aberrations by imatinib in vitro

Abstract

Imatinib (STI571, Gleevec/Glivec) is a potent selective tyrosine kinase inhibitor and is used successfully in the treatment of chronic myeloid leukemia (CML). While karyotype alterations, in addition to the Philadelphia chromosome, are a common phenomenon of progressing CML, the observation of BCR-ABL-negative leukemic clones with distinct aberrant karyotypes under an imatinib regimen is not yet understood. Here we test the hypothesis that such tumor clones may be induced de novo from normal cells by imatinib. In vitro experiments with varying drug concentrations (5–20 μ M) were performed on normal human dermal fibroblasts (NHDF), Chinese hamster embryonal and Indian muntjak fibroblasts. After 3 weeks of treatment, analysis of cell cultures by centrosome immunostaining and conventional cytogenetics revealed that imatinib induced centrosome and chromosome aberrations in all cultures in a significant dose-dependent and species-independent manner. Moreover, the results of NHDF long-term culture experiments demonstrated that aberrant phenotypes, emerging under imatinib treatment for 12 weeks, were not reversible after prolonged propagation omitting the drug. These observations suggest a causative role of imatinib in the origin of centrosome and karyotype aberrations (genetic instability) and thus may explain the emergence of clonal chromosomal abnormalities in BCR-ABL-negative progenitor cells under imatinib therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Sawyers CL . Chronic myeloid leukemia. N Engl J Med 1999; 340: 1330–1340.

    Article  CAS  Google Scholar 

  2. Deininger M, Buchdunger E, Druker BJ . The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005; 105: 2640–2653.

    Article  CAS  Google Scholar 

  3. Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 2000; 295: 139–145.

    CAS  Google Scholar 

  4. Okuda K, Weisberg E, Gilliland DG, Griffin JD . ARG tyrosine kinase activity is inhibited by STI571. Blood 2001; 97: 2440–2448.

    Article  CAS  Google Scholar 

  5. Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 2005; 23: 329–336.

    Article  CAS  Google Scholar 

  6. Dewar AL, Cambareri AC, Zannettino AC, Miller BL, Doherty KV, Hughes TP et al. Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib. Blood 2005; 105: 3127–3132.

    Article  CAS  Google Scholar 

  7. Calabretta B, Perrotti D . The biology of CML blast crisis. Blood 2004; 103: 4010–4022.

    Article  CAS  Google Scholar 

  8. Izumi T, Imagawa S, Hatake K, Miura Y, Ariyama T, Inazawa J et al. Philadelphia chromosome-negative cells with trisomy 8 after busulfan and interferon treatment of Ph1-positive CML. Int J Hematol 1996; 64: 73–77.

    Article  CAS  Google Scholar 

  9. Ohtsuka E, Kikuchi H, Abe Y, Moriyama K, Ohno E, Hirota K et al. Acute myeloblastic leukaemia without Philadelphia chromosome developing after interferon therapy for chronic myelocytic leukemia with Philadelphia chromosome. Br J Haematol 1995; 90: 951–953.

    Article  CAS  Google Scholar 

  10. Andersen MK, Pedersen-Bjergaard J, Kjeldsen L, Dufva IH, Brondum-Nielsen K . Clonal Ph-negative hematopoiesis in CML after therapy with imatinib mesylate is frequently characterized by trisomy 8. Leukemia 2002; 16: 1390–1395.

    Article  CAS  Google Scholar 

  11. Braziel RM, Launder TM, Druker BJ, Olson SB, Magenis RE, Mauro MJ et al. Hematopathologic and cytogenetic findings in imatinib mesylate-treated chronic myelogenous leukemia patients: 14 months’ experience. Blood 2002; 100: 435–441.

    Article  CAS  Google Scholar 

  12. Terre C, Eclache V, Rousselot P, Imbert M, Charrin C, Gervais C et al. France Intergroupe pour la Leucemie Myeloide Chronique. Report of 34 patients with clonal chromosomal abnormalities in Philadelphia-negative cells during imatinib treatment of Philadelphia-positive chronic myeloid leukemia. Leukemia 2004; 18: 1340–1346.

    Article  CAS  Google Scholar 

  13. Bumm T, Müller C, Al-Ali HK, Krohn K, Shepherd P, Schmidt E et al. Emergence of clonal cytogenetic abnormalities in Ph− cells in some CML patients in cytogenetic remission to imatinib but restoration of polyclonal hematopoiesis in the majority. Blood 2003; 101: 1941–1949.

    Article  CAS  Google Scholar 

  14. Bacher U, Hochhaus A, Berger U, Hiddemann W, Hehlmann R, Haferlach T et al. Clonal aberrations in Philadelphia chromosome negative hematopoiesis in patients with chronic myeloid leukemia treated with imatinib or interferon alpha. Leukemia 2005; 19: 460–463.

    Article  CAS  Google Scholar 

  15. Schoch C, Haferlach T, Kern W, Schnittger S, Berger U, Hehlmann R et al. Occurence of additional chromosome aberrations in chronic myeloid leukemia patients treated with imatinib mesylate. Leukemia 2003; 17: 461–463.

    Article  CAS  Google Scholar 

  16. O’Dwyer ME, Gatter KM, Loriaux M, Druker BJ, Olson SB, Magenis RE et al. Demonstration of Philadelphia chromosome negative abnormal clones in patients with chronic myelogenous leukemia during major cytogenetic responses induced by imatinib mesylate. Leukemia 2003; 17: 481–487.

    Article  Google Scholar 

  17. Lahaye T, Riehm B, Berger U, Paschka P, Müller MC, Kreil S et al. Response and resistance in 300 patients with BCR-ABL-positive leukemias treated with imatinib in a single center. Cancer 2005; 103: 1659–1669.

    Article  Google Scholar 

  18. Giehl M, Fabarius A, Frank O, Hochhaus A, Hafner M, Hehlmann R et al. Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Leukemia 2005; 19: 1192–1197.

    Article  CAS  Google Scholar 

  19. Krämer A . Centrosome aberrations–hen or egg in cancer initiation and progression? Leukemia 2005; 19: 1142–1144.

    Article  Google Scholar 

  20. Holtz MS, Slovak ML, Zhang F, Sawyers CL, Forman SJ, Bhatia R . Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogeneous leukemia through reversal of abnormally increased proliferation. Blood 2002; 99: 3792–3800.

    Article  CAS  Google Scholar 

  21. Yerganian G, Leonard M . Maintenance of normal in situ chromosomal features in long-term tissue cultures. Science 1961; 33: 1600–1601.

    Article  Google Scholar 

  22. Ray M, Mohandas T . Proposed banding nomenclature for the Chinese hamster chromosomes (Cricetulus griseus). Cytogenet Cell Genet 1976; 16: 83–91.

    Article  CAS  Google Scholar 

  23. Vig BK, Hallett WH . 5-Azacytidine- and Hoechst-induced aneuploidy in Indian muntjac. Mutat Res 2000; 466: 79–86.

    Article  CAS  Google Scholar 

  24. Neumann F, Teutsch N, Kliszewski S, Bork S, Steidl U, Brors B et al. Gene expression profiling of Philadelphia chromosome (Ph)-negative CD34+ hematopoietic stem and progenitor cells of patients with Ph-positive CML in major molecular remission during therapy with imatinib. Leukemia 2005; 19: 458–460.

    Article  CAS  Google Scholar 

  25. Casali M, Truglio F, Milone G, Di Raimondo F, Parrinello G, Maserati E et al. Trisomy 8 in Philadelphia chromosome (Ph1)-negative cells in the course of Ph1-positive chronic myelocytic leukemia. Genes Chromosomes Cancer 1992; 4: 269–270.

    Article  CAS  Google Scholar 

  26. Bilhou-Nabera C, Marit G, Devianne I, Viard F, Salzes S, Montastruc M et al. A second case of trisomy 8 in Philadelphia chromosome (Ph)-negative cells during the course of Ph-positive chronic myelocytic leukemia. Genes Chromosomes Cancer 1993; 6: 255–256.

    Article  CAS  Google Scholar 

  27. Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY et al. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 1999; 399: 814–817.

    Article  CAS  Google Scholar 

  28. Kharbanda S, Pandey P, Jin S, Inoue S, Bharti A, Yuan ZM et al. Functional interaction between DNA-PK and c-Abl in response to DNA damage. Nature 1997; 386: 732–735.

    Article  CAS  Google Scholar 

  29. Shafman T, Khanna KK, Kedar P, Spring K, Kozlov S, Yen T et al. Interaction between ATM protein and c-Abl in response to DNA damage. Nature 1997; 387: 520–523.

    Article  CAS  Google Scholar 

  30. Yuan ZM, Huang Y, Ishiko T, Nakada S, Utsugisawa T, Kharbanda S et al. Regulation of Rad51 function by c-Abl in response to DNA damage. J Biol Chem 1998; 273: 3799–3802.

    Article  CAS  Google Scholar 

  31. Fabarius A, Hehlmann R, Duesberg PH . Instability of chromosome structure in cancer cells increases exponentially with degrees of aneuploidy. Cancer Genet Cytogenet 2003; 143: 59–72.

    Article  CAS  Google Scholar 

  32. Mattiuzzi GN, Cortes JE, Talpaz M, Reuben J, Rios MB, Shan J et al. Development of Varicella-Zoster virus infection in patients with chronic myelogenous leukemia treated with imatinib mesylate. Clin Cancer Res 2003; 9: 976–980.

    CAS  PubMed  Google Scholar 

  33. Dietz AB, Souan L, Knutson GJ, Bulur PA, Litzow MR, Vuk-Pavlovic S . Imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo. Blood 2004; 104: 1094–1099.

    Article  CAS  Google Scholar 

  34. Baskaynak G, Kreuzer KA, Schwarz M, Zuber J, Audring H, Riess H et al. Squamous cutaneous epithelial cell carcinoma in two CML patients with progressive disease under imatinib treatment. Eur J Haematol 2003; 70: 231–234.

    Article  Google Scholar 

  35. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S . The protein kinase complement of the human genome. Science 2002; 298: 1912–1934.

    Article  CAS  Google Scholar 

  36. Davies SP, Reddy H, Caivano M, Cohen P . Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 2000; 351: 95–105.

    Article  CAS  Google Scholar 

  37. Bertrand P, Lambert S, Joubert C, Lopez BS . Overexpression of mammalian Rad51 does not stimulate tumorigenesis while a dominant-negative Rad51 affects centrosome fragmentation, ploidy and stimulates tumorigenesis, in p53-defective CHO cells. Oncogene 2003; 22: 7587–7592.

    Article  CAS  Google Scholar 

  38. Daboussi F, Thacker J, Lopez BS . Genetic interactions between RAD51 and its paralogues for centrosome fragmentation and ploidy control, independently of the sensitivity to genotoxic stresses. Oncogene 2005; 24: 3691–3696.

    Article  CAS  Google Scholar 

  39. Dodson H, Bourke E, Jeffers LJ, Vagnarelli P, Sonoda E, Takeda S et al. Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. EMBO J 2004; 23: 3864–3873.

    Article  CAS  Google Scholar 

  40. Kharbanda S, Yuan ZM, Weichselbaum R, Kufe D . Determination of cell fate by c-Abl activation in the response to DNA damage. Oncogene 1998; 17: 3309–3318.

    Article  Google Scholar 

  41. Ley SC, Marsh M, Bebbington CR, Proudfoot K, Jordan P . Distinct intracellular localization of Lck and Fyn protein tyrosine kinases in human T lymphocytes. J Cell Biol 1994; 125: 639–649.

    Article  CAS  Google Scholar 

  42. Takai N, Hamanaka R, Yoshimatsu J, Miyakawa I . Polo-like kinases (Plks) and cancer. Oncogene 2005; 24: 287–291.

    Article  CAS  Google Scholar 

  43. Meraldi P, Honda R, Nigg EA . Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr Opin Genet Dev 2004; 14: 29–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Alex D Greenwood (GSF-München, Germany) for critically reading the manuscript and George Yerganian (Brandeis University and Cytogen Research, Boston, MA USA) for providing primary CHE cells. We further thank Mrs Susanne Brendel for excellent technical assistance. We are grateful to Christel Weiss (Institut für Biostatistik, Mannheim, Germany) for assistance with statistical analyses. This work was supported by the Albert und Anneliese Konanz-Stiftung, Heidelberg and the Forschungsfonds der Fakultät für Klinische Medizin Mannheim der Universität Heidelberg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Fabarius.

Additional information

Supplementary Information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabarius, A., Giehl, M., Frank, O. et al. Induction of centrosome and chromosome aberrations by imatinib in vitro. Leukemia 19, 1573–1578 (2005). https://doi.org/10.1038/sj.leu.2403861

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403861

Keywords

This article is cited by

Search

Quick links