Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on Angiogenesis

Antiangiogenic treatment with endostatin inhibits progression of AML in vivo

Abstract

Increased vessel density in the bone marrow of patients with acute myeloid leukemia as well as elevated expression of proangiogenic factors by leukemic cells implies a central role of angiogenesis in hematological malignancies. Endostatin (ES), a fragment of collagen XVIII, is an endogenous inhibitor of angiogenesis that has shown therapeutic activity in solid tumors in various preclinical models. Using microencapsulation technology, we studied the therapeutic effect of ES in AML. While ES had no effect on proliferation of M1 murine leukemic cells in vitro, ES producing microbeads significantly inhibited growth of subcutaneous chloromas in SCID mice as compared to controls. In a leukemia model using M1 cells the concomitant treatment of mice with ES microbeads prolonged median survival significantly. Histological analysis revealed a decreased microvessel density and a reduced number of CD31-positive single cells, putatively endothelial progenitor cells, in the bone marrow of treated animals. Taken together, ES has inhibitory effects on neo-angiogenesis in the bone marrow and on progression of leukemia in vivo. These experiments suggest a possible therapeutic role of antiangiogenic gene therapy with ES in AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Folkman J . Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–1186.

    Article  CAS  Google Scholar 

  2. Risau W . Mechanisms of angiogenesis. Nature 1997; 386: 671–674.

    Article  CAS  Google Scholar 

  3. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 2335–2342.

    Article  CAS  Google Scholar 

  4. Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 1997; 89: 1870–1875.

    CAS  PubMed  Google Scholar 

  5. Padro T, Bieker R, Ruiz S, Steins M, Retzlaff S, Bürger H et al. Overexpression of vascular endothelial growth factor (VEGF) and its cellular receptor KDR (VEGFR-2) in the bone marrow of patients with acute myeloid leukemia. Leukemia 2002; 16: 1302–1310.

    Article  CAS  Google Scholar 

  6. Aguayo A, Kantarjian HM, Estey EH, Giles FJ, Verstovsek S, Manshouri T et al. Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer 2002; 95: 1923–1930.

    Article  Google Scholar 

  7. Hussong JW, Rodgers GM, Shami PJ . Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000; 95: 309–313.

    CAS  PubMed  Google Scholar 

  8. Padro T, Ruiz S, Bieker R, Burger H, Steins M, Kienast J et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 2000; 95: 2637–2644.

    CAS  PubMed  Google Scholar 

  9. Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D et al. Angiogenesis in acute and chronic leukemias and myelodysplastic disorders. Blood 2000; 96: 2240–2245.

    CAS  PubMed  Google Scholar 

  10. Kuzu I, Beksac M, Arat M, Celebi H, Elhan AH, Erekul S . Bone marrow microvessel density (MVD) in adult acute myeloid leukemia (AML): therapy induced changes and effects on survival. Leuk Lymphoma 2004; 45: 1185–1190.

    Article  CAS  Google Scholar 

  11. Bellamy WT, Richter L, Sirjani D, Roxas C, Glinsmann-Gibson B, Frutiger Y et al. Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 2001; 97: 1427–1434.

    Article  CAS  Google Scholar 

  12. Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M et al. Expression of FLT4 and its ligand VEGF-C in acute myeloid leukemia. Leukemia 1997; 11: 1234–1237.

    Article  Google Scholar 

  13. Muller A, Lange K, Gaiser T, Hofmann M, Bartels H, Feller AC et al. Expression of angiopoietin-1 and its receptor TEK in hematopoietic cells from patients with myeloid leukemia. Leuk Res 2002; 26: 163–168.

    Article  CAS  Google Scholar 

  14. Loges S, Heil G, Bruweleit M, Schroder V, Butzal M, Fischer W et al. Analysis of concerted expression of angiogenic growth factors in acute myeloid leukemia: Expression of angiopoietin-2 represents an independent prognostic growth factor for overall survival. J Clin Oncol 2005; 23: 1109–1117.

    Article  CAS  Google Scholar 

  15. Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 2000; 106: 511–521.

    Article  CAS  Google Scholar 

  16. Wakabayashi M, Miwa H, Shikami M, Hiramatsu A, Ikai T, Tajima E et al. Autocrine pathway of angiopoietins-Tie2 system in AML cells: association with phosphatidyl-inositol 3 kinase. Hematol J 2004; 5: 353–360.

    Article  CAS  Google Scholar 

  17. Schuch G, Machluf M, Bartsch Jr G, Nomi M, Richard H, Atala A et al. In vivo administration of vascular endothelial growth factor (VEGF) and its antagonist, soluble neuropilin-1, predicts a role of VEGF in the progression of acute myeloid leukemia in vivo. Blood 2002; 100: 4622–4628.

    Article  CAS  Google Scholar 

  18. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–285.

    Article  CAS  Google Scholar 

  19. Dhanabal M, Ramchandran R, Volk R, Stillman IE, Lombardo M, Iruela-Arispe ML et al. Endostatin: yeast production, mutants, and antitumor effect in renal cell carcinoma. Cancer Res 1999; 59: 189–197.

    CAS  PubMed  Google Scholar 

  20. Perletti G, Concari P, Giardini R, Marras E, Piccinini F, Folkman J et al. Antitumor activity of endostatin against carcinogen-induced rat primary mammary tumors. Cancer Res 2000; 60: 1793–1796.

    CAS  PubMed  Google Scholar 

  21. Blezinger P, Wang J, Gondo M, Quezada A, Mehrens D, French M et al. Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene. Nat Biotechnol 1999; 17: 343–348.

    Article  CAS  Google Scholar 

  22. Kisker O, Becker CM, Prox D, Fannon M, D'Amato R, Flynn E et al. Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res 2001; 61: 7669–7674.

    CAS  PubMed  Google Scholar 

  23. Dhanabal M, Ramchandran R, Waterman MJ, Lu H, Knebelmann B, Segal M et al. Endostatin induces endothelial cell apoptosis. J Biol Chem 1999; 274: 11721–11726.

    Article  CAS  Google Scholar 

  24. Kilic N, Ergun S . Methods to evaluate the formation and stabilization of blood vessels and their role in tumor growth and metastasis. In: Brooks SA, Schumacher U (eds.) Metastasis Research Protocols, Vol. 2, pp 125–148.

  25. Ergun S, Kilic N, Wurmbach JH, Ebrahimnejad A, Fernando M, Sevinc S et al. Endostatin inhibits angiogenesis by stabilization of newly formed endothelial tubes. Angiogenesis 2001; 4: 193–206.

    Article  CAS  Google Scholar 

  26. Deckers M, van der Pluijm G, Dooijewaard S, Kroon M, van Hinsbergh V, Papapoulos S et al. Effect of angiogenic and antiangiogenic compounds on the outgrowth of capillary structures from fetal mouse bone explants. Lab Invest 2001; 81: 5–15.

    Article  CAS  Google Scholar 

  27. Hanai J, Dhanabal M, Karumanchi SA, Albanese C, Waterman M, Chan B et al. Endostatin causes G1 arrest of endothelial cells through inhibition of cyclin D1. J Biol Chem 2002; 277: 16464–16469.

    Article  CAS  Google Scholar 

  28. Morbidelli L, Donnini S, Chillemi F, Giachetti A, Ziche M . Angiosuppressive and angiostimulatory effects exerted by synthetic partial sequences of endostatin. Clin Cancer Res 2003; 9: 5358–5369.

    CAS  PubMed  Google Scholar 

  29. Bruserud O, Glenjen N, Ryningen A . Effects of angiogenic regulators on in vitro proliferation and cytokine secretion by native human acute myelogenous leukemia blasts. Eur J Haematol 2003; 71: 9–17.

    Article  CAS  Google Scholar 

  30. Bertolini F, Fusetti L, Mancuso P, Gobbi A, Corsini C, Ferrucci PF et al. Endostatin, an antiangiogenic drug, induces tumor stabilization after chemotherapy or anti-CD20 therapy in a NOD/SCID mouse model of human high-grade non-Hodgkin lymphoma. Blood 2000; 96: 282–287.

    CAS  PubMed  Google Scholar 

  31. Capillo M, Mancuso P, Gobbi A, Monestiroli S, Pruneri G, Dell'Agnola C et al. Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors. Clin Cancer Res 2003; 9: 377–382.

    CAS  PubMed  Google Scholar 

  32. Read TA, Sorensen DR, Mahesparan R, Enger PO, Timpl R, Olsen BR et al. Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol 2001; 19: 29–34.

    Article  CAS  Google Scholar 

  33. Joki T, Machluf M, Atala A, Zhu J, Seyfried NT, Dunn IF et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat Biotechnol 2001; 19: 35–39.

    Article  CAS  Google Scholar 

  34. Schuch G, Heymach JV, Nomi M, Machluf M, Force J, Atala A et al. Endostatin inhibits the vascular endothelial growth factor-induced mobilization of endothelial progenitor cells. Cancer Res 2003; 63: 8345–8350.

    CAS  PubMed  Google Scholar 

  35. Yi M, Sakai T, Fassler R, Ruoslahti E . Antiangiogenic proteins require plasma fibronectin or vitronectin for in vivo activity. Proc Natl Acad Sci USA 2003; 100: 11435–11438.

    Article  CAS  Google Scholar 

  36. Kisker O, Becker CM, Prox D, Fannon M, D'Amato R, Flynn E et al. Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res 2001; 61: 7669–7674.

    CAS  PubMed  Google Scholar 

  37. Abdollahi A, Hahnfeldt P, Maerker C, Grone HJ, Debus J, Ansorge W et al. Endostatin's antiangigenic signaling network. Mol Cell 2004; 13: 649–663.

    Article  CAS  Google Scholar 

  38. Kim YM, Hwang S, Kim YM, Pyun BJ, Kim TY, Lee ST et al. Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J Biol Chem 2002; 277: 27872–27879.

    Article  CAS  Google Scholar 

  39. Wickstrom SA, Alitalo K, Keski-Oja J . Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Res 2002; 62: 5580–5589.

    CAS  PubMed  Google Scholar 

  40. Eisterer W, Jiang X, Bachelot T, Pawliuk R, Abramovich C, Leboulch P et al. Unfulfilled promise of endostatin in a gene therapy-xenotransplant model of human acute lymphocytic leukemia. Mol Therapy 2002; 5: 352–359.

    Article  CAS  Google Scholar 

  41. Iversen PO, Sorensen DR, Benestad HB . Inhibitors of angiogenesis selectively reduce the malignant cell load in rodent models of human myeloid leukemias. Leukemia 2002; 16: 376–381.

    Article  CAS  Google Scholar 

  42. Miyake K, Inokuchi K, Miyake N, Dan K, Shimada T . Antiangiogenic gene therapy of myeloproliferative disease developed in transgenic mice expressing P230 bcr/abl. Gene Therapy 2005; 12: 541–545.

    Article  CAS  Google Scholar 

  43. Scappaticci FA, Smith R, Pathak A, Schloss D, Lum B, Cao Y et al. Combination angiostatin and endostatin gene transfer induces synergistic antiangiogenic activity in vitro and antitumor efficacy in leukemia and solid tumors in mice. Mol Therapy 2001; 3: 186–196.

    Article  CAS  Google Scholar 

  44. Fiedler W, Mesters R, Tinnefeld H, Loges S, Staib P, Duhrsen U et al. A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood 2003; 102: 2763–2767.

    Article  CAS  Google Scholar 

  45. Karp JE, Gojo I, Pili R, Gocke CD, Greer J, Guo C et al. Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-beta-d-arabinofuranosylcytosine, mitoxantrone, and bevacizumab. Clin Cancer Res 2004; 10: 3577–3585.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was in part supported by the Erich-Roggenbuck-Stiftung (GS, SE) and a BMBF grant (SL, WF). The authors are grateful to Kirsten Miethe and Katrin Kluge for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Schuch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuch, G., Oliveira-Ferrer, L., Loges, S. et al. Antiangiogenic treatment with endostatin inhibits progression of AML in vivo. Leukemia 19, 1312–1317 (2005). https://doi.org/10.1038/sj.leu.2403824

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403824

Keywords

This article is cited by

Search

Quick links